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We derive a new description of two complementary classes of scalar, vector, or tensor sou
namely, nonradiating (NR) sources and sources that lack a NR part, i.e., “purely radiating” sources.
class of purely radiating sources is shown to be exactly the class of solutions—within the sour
support—of the homogeneous form of the associated partial differential equation relating the sourc
their fields; i.e., purely radiating sources are themselves fields. We show that this result is related t
well-known reciprocity principle and establish a new definition of a localized NR source based on
principle. A broad class of physically relevant sources, all of which possess a NR part, is identifi
The role of NR sources in absorption of radiation and energy storage is addressed.
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It has been known for some time that localized sourc
to the scalar wave equation and to Maxwell’s equation
exist which do not radiate [1,2]. Such sources, referred
as nonradiating (NR) sources, generate vanishing fie
outside their support [2] which prevents them from
interacting with nearby objects by means of their field
Work on NR sources dates back to Sommerfeld, Herglo
Hertz, Ehrenfest, and Schott (see references in [1]) w
studied these objects in connection with electron an
atom models. NR sources have also appeared extensiv
in inverse source/scattering theories as the null spa
of the source-to-field mapping [3,4]. NR sources hav
been studied very recently in connection with strings [5
In this Letter, we characterize in novel ways both NR
sources and sources that lack a NR part, i.e., “pure
radiating” sources.

Consider a general complex-valued scalar, vector,
tensor “source-field” system�r, c� described by a linear,
second-order partial differential equation (PDE)Lc�x� �
r�x�, wherex [ Rn denotes the relevant space or spac
time coordinates,L is a linear second-order PD operator
andr andc are “sources” and “fields” to that equation
respectively. The fieldc produced by a sourcer can be
expressed as the Green function integralc�x� �

R
dnx0 3

r�x0�G0�x jx0�, whereG0 is the Green function associated
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with L and the given boundary conditions. Table I lis
physically realizable examples of these source-field s
tems, indicating the relevant coordinates, field, source,
PD operator associated with each one.

We define the Hilbert spaceU of L2 sourcesr supported
in a simply connected source regionD and assign to it
the inner product�r1, r2� �

R
D dnx r

�
1�x�r2�x�, where�

denotes the complex conjugate. The following result i
trivial generalization of known results on NR scalar an
electromagnetic sources [2,6]: Any NR sourcerNR [ U,
i.e., anyL2 source of supportD whose field vanishes for
x ” D, must admit the representation

rNR�x� � LcNR�x� , (1)

wherecNR, a function supported inD, is exactly the field
produced by that NR source. Now, because of the assu
L2 nature of the NR source in (1) and, in particular, i
lack of single-layer and higher-order singularities on t
boundary≠D of D, one finds thatcNR must possess com
pact support inD [so thatcNR�x� � 0 on ≠D] in addition
to continuous first partial derivatives on the boundary≠D
of D. The above-statedNR boundary conditions were de-
rived first by Gamlielet al. [7] in the context of the inho-
mogeneous Helmholtz equation in 3D space and rederi
later by Berryet al. [5] for the 1D case. They have als
© 1999 The American Physical Society 3345
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TABLE I. Scalar, vector, and tensor equations describing source-field systems of interest. Indicated are the relevant space or
space-time coordinates, source, field, and PD operator associated with each equation. In the table x � �x, y, z� and t denote
position in space and time, respectively. The 3D form of the equation for a forced string in an elastic medium (a Klein-Gordon
equation with an inhomogeneous term) is relevant to scalar meson fields. In the line corresponding to the linearized Einstein
equations, given here in the Lorentz (or Hilbert) gauge, cmn , Tmn , and l are the gravitational potential, the energy-momentum
tensor, and Einstein’s gravitational constant, respectively.

Coordinates Field �c� Source �r� PD Operator �L� Description

�x, t� c�x, t� q�x, t� � � =2 2 c22≠2
t Wave equation

x c�x� q�x� =2 1 k2 Helmholtz equation
�x, t� E�x, t� 2c22≠tJ�x, t� === 3 === 3 1c22≠2

t Vector wave equation
�x, t� c�x, t� F�x, t� ≠2

x 2 c22≠2
t 2 m2 Forced string in an elastic medium

xm � �x, ict� cmn 2lTmn � Linearized Einstein equations
appeared in two recent papers dealing with NR sources and
their fields [8,9].

Even though gravitational NR sources have received
little attention in the literature, there are well-known ex-
amples of such NR sources (see, e.g., [10], pp. 974–979).
The simplest example is provided by a pulsating (or even
collapsing) spherically symmetric source. In particular,
the exterior metric of such an object (e.g., a star), namely,
Schwarzchild’s metric [as required by Birkhoff’s theorem
(see, e.g., [10], p. 843)], is well known to be insensitive to
the object’s radial fluctuations. This result is actually an
exact one; i.e., it is not a weak field approximation. It cor-
responds to the lack of gravitational monopole radiation.
Other well-known exact gravitational NR sources are the
mass-dipole and the magnetic-dipole. An analogous situ-
ation arises in electromagnetic theory where spherically
symmetric and, in general, longitudinal current distribu-
tions do not radiate.

We show below that in order for a scalar, electromag-
netic, or weak gravitational source r [ U to lack a NR
part, in the sense that �rNR, r� � 0 for all NR sources
rNR [ U, then

Lr�x� � 0 if x [ D (2)

(the boundary ≠D of D excluded), i.e., r must be a
free-field, truncated within its support D. One deduces
from this result and the unique decomposition of an L2,
localized source into a radiating and a NR part (see, e.g.,
the projection theorem discussion in [11]) that, ultimately,
the radiating parts, i.e., the sources of wave radiation are,
themselves, fields. We also provide below a connection
between this result and the reciprocity principle, along with
a new definition of a NR source based on that principle.

It follows from (1) and the generalized Green theo-
rem that

�rNR, r� �
Z

D
dnx c�

NR�x�L̃r�x� , (3)

where L̃ is the adjoint of the PD operator L, as defined, e.g.,
in [12], Chap. 15. If the PD operator L is self-adjoint, as
is, in fact, the case for all the source-field systems listed
in Table I, then it follows from (3) that the orthogonality
3346
condition �rNR, r� � 0 will hold for arbitrary cNR if and
only if (2) holds [note that, because of the vanishing of cNR
on ≠D for rNR [ U, the integral in (3) actually involves
only the interior of the source region D]. Expression (2)
thus defines the sought-after necessary and sufficient con-
dition for an L2 source r of support D to be purely radi-
ating, i.e., to lack a NR component. This condition tells
us that the class of all such purely radiating sources is ex-
actly the class of solutions of the homogeneous form of the
PDE governing the corresponding source-field system, in
the interior of the source’s support. For example, for a
time-harmonic, space-dependent electromagnetic source-
field system �J, E� with a suppressed e2ivt time depen-
dence, expression (2) takes the form

=== 3 === 3 J�x� 2 k2J�x� � 0 if x [ D (4)

(the boundary ≠D of D excluded) where k � v�c. The
validity of (4), and of the scalar counterparts of (2) for L �
=2 1 k2 and L � =2 2 c22≠2

t , can be verified, for special
cases, directly from inverse source problem results and, in
particular, from results on the so-called minimum L2 norm/
minimum energy sources presented in [4,11,13,14].

The general result (2) leads to yet another previously un-
known result: It can be shown via standard Green func-
tion techniques that no (nontrivial) source of compact
support D and vanishing first partial derivatives on the
boundary ≠D of D exists that obeys the requirement (2).
This interesting consequence of (2) can be stated as fol-
lows: Let r be a source of compact support D and van-
ishing first partial derivatives on the boundary ≠D of D,
then r has a NR part. We have thus found an important,
broad class of physically relevant sources (to be referred to
as well-behaved sources) all of which possess a NR part.
By being applicable to a very tangible class of sources,
this result emphasizes, in a previously unnoticed way, the
undeniable existence of NR sources in nature. Of course,
this does not mean that all L2, localized sources must pos-
sess a NR part: purely radiating L2, localized sources (i.e.,
sources in the orthogonal complement of the null space of
the source-to-field propagator) must exist; otherwise there
would be no wave radiation at all. To fully appreciate
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these issues, one must bear in mind that, actually, there
are more general classes of sources other than the well-
behaved ones that do not obey the necessary and sufficient
condition (2) and, therefore, also have a NR part. These
points are illustrated with an example below.

We establish next a connection between the results
above and a new definition of a NR source based on the
concept of reciprocity. For this purpose, we note first that
the result (3) actually holds for all localized (not neces-
sarily L2) NR sources rNR. One then concludes from (3)
that, in general, any localized scalar, electromagnetic, or
weak gravitational NR source rNR, of support D, must
be necessarily orthogonal to all solutions of (2), in both
the interior and on the boundary ≠D of the NR source’s
support D. Actually, this condition is also sufficient: A
general source confined within D is NR if and only if
it obeys the orthogonality relation �y, rNR� � 0 with re-
spect to all solutions y, in its support D, of the homo-
geneous form of the PDE of the associated source-field
system, i.e., Ly�x� � 0 for x [ D. To show sufficiency
one simply notes that LG�

0�x0, x� � 0 if x0 ” D and
x [ D so that cNR�x0� �

R
D dnx rNR�x�G0�x0, x� � 0

for x0 ” D. This automatically characterizes localized
NR sources as noninteractors. In other words, localized
NR sources do not absorb power from incident fields. The
physical explanation of this property is provided by the
well-known reciprocity principle: If a source does not ra-
diate, then it does not receive either, and vice versa. The
NR component of a localized source is thus both invisible
to external observers and noninteracting to external fields.
The question then arises naturally as to whether localized
NR sources possess any physical significance at all. The
answer is positive: A localized NR source stores (nontriv-
ial) field energy. It thus plays a role in a system’s energy
budget and dynamics.

We elaborate on our results with the aid of an electro-
magnetic example in 1D space. The chosen example deals
with the basic problem of wave radiation and reception in
a transmission line system (equivalently, a 1D plane wave
system) driven by uniformly distributed sources/loads. It
illustrates in a very basic context not only some of the
general results derived above but also other closely related
ideas. We use Gaussian units and c � 1.

Let J�x� � J�x�ẑ be a homogeneous current distribu-
tion (with a suppressed e2ivt time dependence) localized
within D � �2a, a� so that

J�x� �

Ω
1 if x [ D ,
0 else.

(5)

The z component of the electric field produced by this
source, E�x�, related to J�x� by

�d2�dx2 1 k2�E�x� � 2ivJ�x� ,

is found after a straightforward analysis to be

E�x� �

(
i
k �eika cos�kx� 2 1�, if jxj # a ,
2a sinc�ka�eikjxj, else,
where sinc�?� � sin�?���?�. Now we note that the source
J�x� does not obey the relevant particular form of (2), i.e.,

�d2�dx2 1 k2�J�x� fi 0 if x [ �2a, a� .

Thus, according to the discussion above, this source must
possess a NR part.

It follows from standard linear inversion theory [11]
that J�x� can be uniquely decomposed into the sum of a
radiating and a NR part, JR�x� and JNR�x�, respectively,
where JR�x� is the minimum L2 norm source whose field
ER�x� � E�x� for x ” D. After some manipulations
along the lines of [11,13] one obtains

JR�x� �
2 sinc�ka�

�sinc�2ka� 1 1�
J�x� cos�kx�

and, consequently, the nontrivial NR component JNR�x� �
J�x� 2 JR�x�. Figure 1 shows plots of the radiating part
JR�x� of J�x� versus x�a, parametrized by ka. The ra-
diating part JR�x� of J�x� is a standing wave truncated
within the source’s support D, as expected from the gen-
eral result (4). It possesses compact support in D only if
ka � �n 1 1�2�p , n � 0, 1, . . . , i.e., it is a resonant wave
solution at those frequencies. It vanishes if ka � np ,
n � 1, 2, . . . ; i.e., a homogeneous source oscillating at
these quantized frequencies is entirely NR. The size of the
smallest NR homogeneous source is then 2a � l, where
l is the wavelength of the field. Figure 2 shows plots of
the real and reactive power of the J-E self-interaction as
a function of ka�p. Also shown in Fig. 2 is a plot of the
NR contribution to the reactive power. The real power
of the J-E self-interaction equals the time-averaged radi-
ated power and is contributed only by the radiating part

FIG. 1. Plots of the radiating part JR�x� of J�x� versus x
for various values of ka: ka � 0.25p (squares); ka � 0.5p
(dashed line); ka � 0.75p (dotted line); ka � p (cross);
ka � 1.25p (bold solid line); ka � 2.5p (dashed-dotted line);
ka � 7.5p (regular solid line).
3347



VOLUME 83, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 25 OCTOBER 1999
FIG. 2. Dashed line: Time-averaged power radiated by the
source J�x� versus ka�p (the value at ka 	 0 is used as a
reference for normalization); this is also the (time-averaged)
radiation-reaction power of this source and the interaction
power of two nonoverlapping homogeneous sources of the form
Eq. (5). Solid line: Total reactive power due to J�x�. Dashed-
dotted line: Reactive power due to JNR�x�.

JR�x� of J�x�, as expected. On the other hand, the reactive
energy is contributed by both the radiating and NR parts.
The reactive contribution of the radiating part decays
rapidly for ka * p . The NR component JNR�x� of J�x�
has an associated nontrivial (time-averaged) stored energy.
The NR modes defined by ka � np, n � 1, 2, . . . repre-
sent states of pure energy storage. The (time-averaged) en-
ergy stored in the electric and magnetic fields, We and Wm,
respectively, associated with these NR modes are found af-
ter a straightforward calculation to be We � 3a2��2np�2

and Wm � a2��2np�2. Thus, the NR component of a sys-
tem represents a nontrivial, noninteracting accumulation of
energy and is therefore relevant to the system’s energy bal-
ance and dynamics. Finally, we also show in Fig. 2 the
real interaction power of two nonoverlapping sources J, J 0

of the form Eq. (5) (with the support D0 of J 0 being en-
tirely outside D). Only the radiating parts (i.e., the wave
components) of these sources interact. The nonabsorbing
nature of the NR parts was verified additionally by calcu-
lating their interactions with incident plane waves.

In this Letter, we arrived at a new description of both
NR and purely radiating sources, i.e., sources that lack a
NR part. Our general results apply to all source-field sys-
tems described by a second-order PDE. Particular atten-
tion was given to the scalar, electromagnetic, and weak
gravitational source-field systems listed in Table I. We
showed that in order for a source to be purely radiating, i.e.,
to lack a NR component, it must obey the homogeneous
form of the PDE governing the associated source-field sys-
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tem. This condition was shown to be also sufficient for
a source to lack a NR part; it therefore represents a new
definition of the class of all such purely radiating sources.
This also shows that the ultimate sources of wave radia-
tion are themselves fields. An important, broad class of
sources (well-behaved sources) all of which possess a NR
component was identified which demonstrates the ever-
presence of an unobservable and nonabsorbing component
in a large number of physically relevant objects interacting
with neighboring objects through fields. We also derived
a new definition of a NR source based on the concept of
reciprocity. We saw then that the NR source/free-field
orthogonality established here in the context of new defi-
nitions of both NR and purely radiating sources can be re-
garded from a physical standpoint as a manifestation of
a NR source’s null interactivity, both in transmission (ra-
diation) and in reception (absorption). Purely radiating
sources represent situations of optimum interaction energy.
NR sources, on the contrary, elude self- and external inter-
actions and represent situations of optimum energy storage.
The NR component of a system is therefore relevant to
the system’s dynamics. For example, an extended charged
harmonic oscillator vibrating in the vicinity of one of its
allowed NR modes could be “attracted” by that energeti-
cally stable mode and stay there until perturbed by nonelec-
tromagnetic interactions (e.g., mechanical forces). Thus,
noninteractivity does not nullify a NR source’s importance.
In the same vein, we conjecture that by virtue of their non-
interactivity, hence, their potential stability to radiative in-
teractions, NR sources could play a factor in the evolution
of complex particle-field systems, e.g., in cosmological
evolution. For the sake of simplicity, when referring to
weak gravitational fields we did so in the context of a par-
ticular gauge, i.e., the Lorentz (or Hilbert) gauge. We are
currently working on the true force field counterpart of the
weak gravitational potential analysis considered above and
plan to report elsewhere on the results of that analysis.
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