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Magnetic Susceptibility of Diluted Pyrochlore and SrCr929xGa319xO19 Antiferromagnets
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We investigate the magnetic susceptibility of the classical Heisenberg antiferromagnet with nearest-
neighbor interactions on the geometrically frustrated pyrochlore lattice, for a pure system and in the
presence of dilution with nonmagnetic ions. Using the fact that the correlation length in this system
for small dilution is always short, we obtain an approximate but accurate expression for the magnetic
susceptibility at all temperatures. We extend this theory to the compound SrCr929xGa319xO19 and
provide an explanation of the phenomenological model recently proposed by Schiffer and Daruka
[Phys. Rev. B 56, 13 712 (1997)].

PACS numbers: 75.10.Hk, 75.10.Nr, 75.30.Cr, 75.40.Mg
The study of magnetic systems with competing interac-
tions has uncovered a wide variety of different physical
phenomena [1], such as glass transitions and the existence
of low-temperature disordered phases. In a class of prob-
lems, which has received a great deal of attention recently
[2], competition between nearest-neighbor antiferromag-
netic exchange interactions arises due to the fact that, in
a group of q $ 3 interacting spins, it is not possible for
each spin to be antialigned with all its q 2 1 neighbors.
Geometric frustration of this kind can give rise to macro-
scopic ground-state degeneracies, and, as early as 1956,
a type of lattice was identified [3] for which the ground-
state degeneracy is particularly large. In this kind of lat-
tice, the frustrated units (triangles for the kagome and
tetrahedra for the pyrochlore lattice, Fig. 1) are arranged
to share sites (neighboring units share one spin) instead of
bonds, as is the case in the more familiar triangular and
face-centered cubic lattices.

Since the manifold of ground states does not provide
an intrinsic energy scale, any perturbation to the simple
nearest-neighbor exchange Hamiltonian has to be con-
sidered strong and can potentially select different low-
temperature physics from the vast range of possibilities
provided by the macroscopic degeneracy. One spectacu-
lar example is the recently experimentally discovered mag-
netic analog of ice [3–5]. The recent surge in theoretical
research on these systems results in large part from experi-
mental developments (see, e.g., Refs. [4,6,7]). Currently,
a systematic study of compounds is under way, in which
different rare earth and transition metal ions are placed on
the pyrochlore lattice, each of which comes with its own
peculiar properties (such as anisotropic or longer-range in-
teractions), so that the space of possible Hamiltonians is
mapped out increasingly well.

In this Letter, we study the magnetic susceptibility, x ,
of a classical pyrochlore Heisenberg antiferromagnet as
a function of temperature, both for the pure system and
in the presence of disorder. The magnetic susceptibility
is a particularly interesting quantity, since, for a large
0031-9007�99�83(16)�3293(4)$15.00
class of geometrically frustrated magnets, its inverse
surprisingly stays close to the linear Curie-Weiss law
down to temperatures much lower than the Curie-Weiss
temperature, QCW , where mean-field theory predicts a
transition [2]. (Eventually, at TF ø QCW , such magnets
usually, but not always [7], freeze [8], a feature which
is absent from the simple classical pyrochlore Heisenberg
model [9–12].) However, to our knowledge, no analytical
expression, exact or approximate, which is valid at all
temperatures, has so far been proposed for pyrochlore
or SrCr929xGa319xO19 (SCGO) antiferromagnets (Fig. 1),
although for the kagome lattice there has been some work
at T � 0 [13], for infinite-component spins [14], and
using a high-order high-temperature series expansion [15].

Although the presence of at least a small amount of
disorder is inevitable, its effect on pyrochlore magnets
has so far been studied only qualitatively [9,12]; again

FIG. 1. (a) The pyrochlore lattice, a network of corner-sharing
tetrahedra. (b) The trilayer SCGO lattice, consisting of corner-
sharing tetrahedra and triangles. The top and bottom kagome
layers are denoted by solid and broken lines, respectively, and
the intervening triangular lattice by circles. By removing the
spins labeled by crosses, only the encircled site of the q � 1
unit thus generated is left occupied.
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there has been some work for the kagome lattice at T � 0
[16]. Recently, Schiffer and Daruka [17] have made
the intriguing observation, described in detail below,
that the deviation from linear Curie-Weiss behavior at
low temperatures for strongly frustrated magnets appears
almost universally as a downturn of x21, and that this
tendency becomes stronger as the dilution is increased.
This effect still awaits a theoretical explanation.

We present here a theory which provides an expression
for the energy and susceptibility of a classical Heisen-
berg pyrochlore antiferromagnet, which is exact at zero
temperature and asymptotically correct for large tempera-
tures, being a good approximation in between. Our treat-
ment of the effect of dilution with nonmagnetic ions
applies in the limit of low disorder and is shown by Monte
Carlo (MC) simulations to give reliable results for dilu-
tions as large as 20%. We explain the empirical findings
of Ref. [17] for SCGO by identifying two mechanisms re-
sponsible for the downturn of x21, one due to dilution, the
other present even in a pure system.

We start with the fundamental observation that the
spin-spin correlations of a pure classical Heisenberg
antiferromagnet on the pyrochlore lattice are always short
ranged [9–12]. A small amount of dilution does not
affect this property and induces neither ordering nor
glassiness [9]. This ceases to be the case, at the latest,
when 1�4 of all sites are vacant. At this dilution, the
possibility of moving local clusters of spins at no cost
in energy is lost as the ground-state degeneracy of the
magnet ceases to be macroscopic [12]. We make use of
this property by treating the weakly diluted lattice as an
arrangement of units of q # 4 spins, which—given the
small correlation length characteristic of this regime—are
treated as if they were decoupled.

For this approximation, which we refer to as the single-
unit approximation, to be useful, we have to know the
properties of the individual units. These can be ob-
tained exactly using a Hubbard-Stratonovich transforma-
tion [12]. We define the Hamiltonian for a group of q
spins Si , in the presence of a magnetic field B, to be

Hq�B� � J
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where we have dropped a constant in the last equality.
The sum on �i, j� runs over all pairs. J . 0 is the
antiferromagnetic bond strength, and Lq is the total spin
of the unit. The g factor and the Bohr magneton have
been absorbed into the definition of B. The partition
function in zero field, Zq, is calculated to be
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where the �Vi� are the directions of the �Si�, and b �
1�T is the inverse temperature. The final integrals may
be evaluated in terms of the error function erf, and we
obtain, up to an overall constant,

Z2�T � � T �1 2 e22�T � , (2)

Z3�T � � T3�2�3 erf�
p

2�T � 2 erf�3
p
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The susceptibility per spin, xq (where q is not to
be confused with a wave vector), can be obtained from
these expressions via the fluctuation-dissipation theorem:
xq � ��M2� 2 �M�2���3Tq�. Noting that for one unit
M2 � L2 is proportional to the energy, we finally obtain
(using �M� � 0), xq � 2T��3qJ� d

dT lnZq�T �.
For the full system, the Hamiltonian is given by

the sum over the Hamiltonians of all N units, H �PN
a�1 H

�a�
qa �B�2�; here, qa is the number of spins in unit

a, and the magnetic field is divided by two to avoid
double counting.

Let us first consider the clean system, with dilution
x � 0, where all units have q � 4. In Fig. 2, we plot
the energy per spin versus temperature in zero field, as
obtained from the single-unit approximation and from
Monte Carlo simulations. This plot demonstrates the
quality of the approximation. The theoretical curves in
Fig. 2 are scaled overall to take into account the fact that,
in the full system, each spin belongs to two tetrahedra
and has six rather than three nearest neighbors. The inset
of Fig. 2 shows a plot of the susceptibility. At high
temperature, the analytic approximation and the simulation
data both follow the Curie-Weiss law and therefore agree.
As the temperature is lowered, the analytical result is only
approximately valid, since it neglects the emerging longer-
range correlations. Still, since these are never strong,
the disagreement never exceeds 5%. Remarkably, at the
lowest temperatures, the two meet again, and, at T � 0,
our theory gives the exact result x�0� � 1��8J�.

Next, we turn to the diluted system. At high T, the
effect of dilution is to decrease the average number of
bonds of each spin, thus giving a reduced Curie-Weiss
temperature QCW �x� � �1 2 x�QCW �0� [18]. The main
effect of disorder is seen by considering the suscepti-
bility at T � 0. On diluting the pyrochlore lattice, the
probability of a tetrahedron containing q spins is given
by Pq�x� � � 4

q � �1 2 x�qx42q. The effect of a magnetic
field on the total spin of a unit is the same for all q $ 2.
From Eq. (1), we can read off that Hq�B� is minimized
by choosing Lq � B��2J�, which is possible for all mag-
netic fields of strength B # 2Jq. A difference in the mag-
netic susceptibility per spin arises only because the total
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FIG. 2. Zero-field energy and susceptibility (inset) per spin
versus temperature from the single-unit approximation (line)
and MC simulations on 10 976 spins (diamonds).

magnetization is shared between a total of q , 4 spins in
a diluted unit. In any case, the susceptibility is finite since
Lq ~ B. This is in striking contrast to the case of q � 1,
where at T � 0 an infinitesimal field suffices to align the
spin, and, hence, x1�0� is infinite.

In the full system at low dilution, a unit with q �
1 in general corresponds not to an isolated spin but
to one which also belongs to a unit with q $ 2 (see
Fig. 1). In this regime, there remain sufficiently many
undiluted tetrahedra to generate an extensive ground-state
dimension and the concomitant finite density of zero-
energy modes, i.e., the possibility of reorienting local
spin clusters at no cost in energy [12]. As a result,
spins separated by a distance larger than the size of such
clusters are essentially uncorrelated at all temperatures.
Since the spins in the q � 1 units are well-separated at
low dilution, they behave like paramagnetic spins even
though they are not isolated.

The behavior at low temperatures is most easily
discussed in terms of the thermally averaged square
of the total magnetization of the system, �M2�x, T ��.
By equipartition, a unit with q $ 3 has L2

q 	 3T�J,
and one with q � 2 has L2

2 	 2T�J, which van-
ishes as T ! 0. By contrast, a unit with q � 1 has
L2

1 � S2 � 1. Since the magnetization of the system
equals the sum of the magnetizations of the units, we
obtain M �

PN
a�1 L�a��2, where the factor 1�2 accounts

for the fact that each spin belongs to two units. Therefore,
�M2�x, T �� �
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Our computer simulations give
P

afia0 �L�a� ? L�a�0� � 0
at low temperature, as would be appropriate for com-
pletely uncorrelated L�a�. However, from the simu-
lations it appears that this sum vanishes not because
the individual terms are zero, but rather because the
terms in the sum exactly cancel for T ! 0. Hence,
�M2�x, T �� � 6TN�1 2 x�x�x, T � �

P
q Nq�x�L2

q�T ��4,
where Nq � NPq�x� is the number of units with q spins,
and L2

q is given by the single-unit expression derived
above. The estimate �M2�0�� � N1�4 � Nx3�1 2 x� is
asymptotically exact in the limit x ! 0. For increasing
dilution, terms higher order in x change the situation. For
example, the configuration depicted in Fig. 3, which is
improbable at small x, contains two q � 1 units but has a
vanishing magnetization at T � 0.

In Fig. 4, we plot the inverse susceptibility x�T �21 for
different dilutions in the range 0 # x # 0.2 at low tem-
perature. Note that, for x as large as 0.2, the agreement
of our theory with the MC simulations is excellent.

It is worth emphasizing that, at any nonzero dilution,
the low temperature susceptibility is dominated by the
q � 1 units. The temperature T̃ below which the para-
magnetic regions dominate can be defined as the point
where the magnetization due to the q � 1 units equals
that of the other units combined, which gives T̃ ~ x3.
This is why the temperature at which the downturn of
x21 becomes visible is small and increases with disorder.

Finally, we address in detail the work by Schiffer and
Daruka [17], who proposed and successfully used a two-
population model to fit the measured x to a form x �
C1��T 1 Qw1� 1 C2��T 1 Qw2�. Here, C1 and Qw1
are the Curie constant and Curie-Weiss temperature of a
“correlated” population which forms momentless clusters
as T ! 0, while C2 and Qw2 are the parameters for an
“orphan” population, which was surmized to be excluded
from the correlated population. Analyzing experimental
data on SCGO from Refs. [19], they found that Qw2
can be set to zero, so that the orphan population in this
case appears truly paramagnetic. For this compound,
they present a series of different dilutions, independently
determined to be in the range 0.11 # x # 0.61, and find
that Qw1�x� � �1 2 x�Qw1�0� and C2�x� ~ x.

The model we have presented above for the pyrochlores
also applies to SCGO [12], which consists of two kagome
layers connected by an intervening triangular layer, and
can be thought of as a slab of pyrochlore cut in a
�111� direction (Fig. 1). Every other kagome triangle
is associated with a site in the triangular layer, and
these together form q � 4 units which generate the short
correlation length required for our theory [12].

FIG. 3. A configuration containing two q � 1 units but with
vanishing magnetization at low T.
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FIG. 4. The inverse susceptibility for different dilutions x.
The lines are given by the single-unit approximation without
any adjustable parameters. Data points are from MC simula-
tions of a lattice of 5488 tetrahedra.

The two main differences for a theory of SCGO are
as follows. First, only two spins (in a triangle not
associated with a site of the triangular lattice, as shown
in Fig. 1b) have to be removed to generate a q � 1
unit. Hence, these units occur with a probability 3x2�2
at low dilution rather than 4x3 as in the pyrochlore.
Second, an additional mechanism is present even for
an undiluted system, which generates a paramagnetic
response in SCGO. If the interlayer coupling, which
acts between spins of the triangular and the kagome
layers, has strength J 0 different from J, the kagome
intralayer coupling, the Hamiltonian for a q � 4 unit
reads H4�B� � �J�2� �
L0 2 B��2J��2 2 �1 2 J 0�J�B ?

St�, where St is the spin in the triangular layer, and
L0 � �J 0�J�St 1

P3
q�1 Si . In the zero-field ground state,

each q � 4 unit has a finite magnetization of magnitude
1 2 J 0�J. These individual magnetization vectors are
aligned at T � 0 even by an infinitesimal field, yielding
an infinite susceptibility. Arguments within the single-
unit approximation along the lines of those given above
predict a susceptibility that diverges as 1�T at low
temperatures. The value of J 0�J is not known accurately,
and there is no reason for it to be exactly 1. For a system
known to be clean, the divergence of the susceptibility
could be used to estimate this quantity.

As a result, at zero and at low dilutions, the model of
Ref. [17] is reasonable even though the orphan population
is not excluded from the correlated one but present even
for the pure system and enhanced by the creation of
q � 1 units at small dilution. (Genuinely isolated spins,
of course, appear at high dilution.) The empirical fit
C2�x� ~ x is clearly at variance with our theory, since
it yields C2�x� � �1 2 J 0�J�2�21 1 x2�14 for small x.
However, there is no contradiction, since the experimental
3296
data consists of only five points, and there are no data
points sufficiently close to x � 0 to distinguish between
the two functional forms of C2.

A quantitative comparison of our theory with experi-
ment may be possible in the pyrochlores, since some
compounds can be grown with very small amounts of
disorder [20]. Introducing controlled amounts of dilution
with nonmagnetic ions can then produce a series of
samples allowing measurement of susceptibility as a
function of disorder and temperature.
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