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Quantum Dots in Magnetic Fields: Phase Diagram and Broken Symmetry
at the Maximum-Density-Droplet Edge
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Quantum dots in magnetic fields are studied within the current spin-density-functional formalism
avoiding any spatial symmetry restrictions of the solutions. We find that the maximum-density
droplet reconstructs into states with broken internal symmetry: The Chamon-Wen edge coexists
with a modulation of the charge density along the edge. The phase boundaries between the
polarization transition, the maximum-density droplet, and its reconstruction are in agreement with recent
experimental results.

PACS numbers: 73.20.Dx, 73.40.Hm, 85.30.Vw
Quantum dots are small electron islands made by
laterally confining the two-dimensional electron gas in a
semiconductor heterostructure. Such nanosized systems
attracted much interest since the techniques in their
fabrication developed far beyond mesoscopic dimensions
[1]. Vertical quantum dots can nowadays be made so
small that they show atomlike behavior [2]: shell structure
and Hund’s rules determine the electronic properties.

Much experimental effort focused on systematically
mapping the magnetic field dependence of the chemical
potential obtained from single-electron capacitance spec-
troscopy [3]. As a bias is applied to the gates, single
electrons tunnel into the quantum dot when its chemi-
cal potential m�N , B� (which depends on the number of
confined electrons N and the magnetic field strength B)
equals the Fermi energy in one gate electrode. First ex-
periments along these lines were performed by Ashoori
et al. [3] and later Klein et al. [4]. Recently, Oosterkamp
et al. [5] systematically extended the measurements to
stronger fields B and larger sizes N . Cusps and steps in
m�N , B� were found to clearly separate different ranges
of magnetic fields. From a comparison to results of ex-
act diagonalization studies [6] these patterns were iden-
tified with phase transitions in the droplet: they occur at
magnetic fields for which the ground-state charge distri-
bution of the dot changes, defining sharp phase bound-
aries. The points at which a complete polarization of
the electrons occurs mark the beginning of the so-called
maximum density droplet (MDD) phase. This new state
suggested by McDonald, Yang, and Johnson [7] is a ho-
mogeneous droplet in which the density is approximately
constant at the maximum value r0 � �2pl2

B�21 that can
be reached in the lowest Landau level. (�B �

p
h̄�eB is

the magnetic length). In the spin-polarized MDD the elec-
trons occupy adjacent orbitals with consecutive angular
momentum. This compact occupation of states maximizes
the electron density. The stability of the MDD is deter-
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mined by a competition between the kinetic and exter-
nal confinement contributions to the total energy, and the
Coulomb repulsion of the electrons. The former would
favor the MDD structure up to infinite fields: with in-
creasing B, the droplet would decrease in radius such that
close to the dot center it could maintain a density corre-
sponding to filling factor one in the bulk limit [8]. This,
however, is inhibited by Coulomb repulsion: At a sharply
defined transition point, the charge density distribution of
the droplet reconstructs [7,9]. Chamon and Wen [9] found
from Hartree-Fock calculations that at the edge of a quan-
tum Hall liquid with bulk filling factor one, a stripe or ring
of electron density breaks off from the homogeneous bulk
or the MDD phase.

In this Letter, we show that the so-called Chamon-
Wen edge actually is a ring of nearly localized electrons
surrounding the MDD (see Fig. 3 below). Moreover, we
find that the calculated phase boundaries are in good
qualitative agreement with recent experimental results [5].

As exact diagonalization techniques [6] are limited to
small particle numbers, mean-field methods are needed to
simplify the complicated many-body problem. We apply
theso-calledcurrent spindensity functional theory (CSDFT)
[10] including gauge fields in the energy functional. In
contrast to the HF calculations by Chamon and Wen [9]
or recent applications of CSDFT [11–13] we avoid any
spatial symmetry restrictions of the mean-field solution.

As a basic model for a quantum dot one usually
considers N interacting electrons of effective mass m�

confined in a two-dimensional harmonic trap. A homo-
geneous magnetic field B � Bez is applied perpendicu-
lar to the x-y plane in which the electrons are confined
by the external potential V � m�v2r2�2. In a symmetric
gauge, the external vector potential acting on the electrons
is A � B�2�2y, x�. For the details of CSDFT we refer to
the work of Vignale and Rasolt [10] and recall here only
the most important steps. The self-consistent Kohn-Sham
© 1999 The American Physical Society
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type equations in CSDFT read
∑

p2

2m�
1

e
2m�

�p ? A 1 A ? p� 1 Vd

∏
Cid � ´idCid .

(We have dropped the arguments r for simplicity). The
index i labels the eigenstates with spin d � �", #�. We
defined effective vector and scalar potentials A :� A 1

Axc and Vd :� �e2�2m��A2 1 Vd 1 VH 1 Vxcd. Here,
VH is the ordinary Hartree potential and Vd � V 1

�2�g�mBB�2 is the external potential, including the
Zeeman energy. [mB � eh̄��2me� is the Bohr magneton].
The exchange-correlation vector and scalar potentials are
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where r is the particle density r � r" 1 r# with
rd �

P
i jCidj

2. The paramagnetic current density is
given by jp � 2ih̄��2m��

P
id�C�

id=Cid 2 Cid=C
�
id�

and the real current density equals j � jp 1 �e�m��Ar.
In essence and as applied in CSDFT, the exchange-
correlation energy depends on the so-called vorticity
g � = 3 �jp�r�jz of the wave function. In the
bulk the total current density must be zero, and thus
g � 2eB�m�. It is this relation that allows us to use
the interpolation formulas for the exchange energy per
particle exc for the homogeneous bulk in CSDFT by
replacing B ! �m��e� jgj. Making use of the local spin
density approximation (LSDA), the exchange energy per
particle exc is parametrized in terms of the local particle
density r, the spin polarization j � �r" 2 r#��r,
and the filling factor n � 2p h̄r�m�jgj. We
used the expression exc�r, j, n� � e`

xc�r�e2f�n�

1 eTC
xc �r, j� �1 2 e2f�n��, where f�n� � 1.5n 1 7n4.

This form interpolates between the infinite magnetic field
limit e`

xc�r� � 20.782
p

2pre2�4pe0e and zero field
limit eTC

xc �r, j�, for which we use the Tanatar-Ceperly
[14] functional and generalize it to intermediate polariza-
tions [15]. For n , 0.9, the interpolation in exc�r, j, n�
follows closely the results of Fano and Ortolani [16]
for polarized electrons in the lowest Landau level, and
saturates quickly to the zero field result for n . 1.

The LSDA has been shown to describe very accu-
rately addition spectra [3–5] in weak or zero fields
[13,17]. Here we concentrate on the polarization tran-
sition and beyond. We use a plane wave basis to solve
the single-particle Kohn-Sham equations self-consistently.
The practical computational techniques which we found
necessary to obtain converged solutions of the CSDFT
mean field equations are described in Ref. [18]. For the
material parameters we choose the typical GaAs val-
ues for the effective mass m� � 0.067me, the dielec-
tric constant ´ � 12.4, and the reduced Landé g-factor
g� � 0.44. (This yields an effective Bohr radius of
a�

B � 9.79 nm.) The strength of the external confinement
is set to h̄v � 4.192N21�4 meV. For different N , this
convention keeps the average electron density in the
droplet approximately constant, in this case roughly
corresponding to a (two-dimensional) Wigner-Seitz radius
rs � 2a�

B.
As a first example, we study N � 20 electrons confined

in the above specified GaAs dot. At a field of about
2.3 T, only one minority spin is left in the dot center.
The droplet becomes completely polarized for fields larger
than about 2.4 T. Shortly after the polarization point
the MDD is formed. Its density profile has perfect
azimuthal symmetry and is nearly constant inside the
droplet corresponding to filling factor one in the bulk: all
electrons are in the lowest Landau level and all single-
particle states are occupied by one spin down electron
with successive angular momenta m � 0, 1, . . . , N 2 1
[19]. The total orbital angular momentum then is M �
1
2N�N 2 1�, which yields M � 160. As in the inner
regions of the MDD the filling factor equals 1, the
density rises with increasing magnetic field, and the whole
droplet decreases in radius. For N � 20 the MDD is
stable for fields up to B & 2.9 T, where the reconstruction
of the charge density distribution begins. The density
distribution of the MDD at B � 2.9 T is shown in the
upper panel of Fig. 1.

FIG. 1 (color). Self-consistent densities for a 20-electron
GaAs quantum dot shortly before edge reconstruction at
B � 2.9 T (top), forming the broken-symmetry Chamon-Wen
edge at 3.0 T (middle) and being fully reconstructed at 3.5 T
(bottom). Right: Angular momentum occupancies Pm as
defined in the text.
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We can gain information about the angular momentum
occupancy in the droplet by projecting the Kohn-Sham
single-particle wave functions jCi#� on Fock-Darwin [20]
states jnm� with radial quantum number n and good
angular momentum m. Summing over all occupied states
i # N , we obtain the total angular momentum occupancy
Pm �

P
i,n j�nm jCi#�j2 with i # N . (In strong fields,

only n � 0 states give a significant contribution.) The
values of Pm are plotted with bars for each m value in
the right column of Fig. 1. As expected, for the MDD all
angular momenta up to N 2 1 have occupancy one.

Increasing the magnetic field effectively compresses
the electron states, such that states with constant m de-
crease in radius. Consequently, the density of the MDD
would continuously increase with B. This, however, is
inhibited by the Coulomb interaction. The droplet thus
redistributes [9] its density over the dot area, taking
advantage of moving electrons from lower to higher angu-
lar momentum states and leaving some partly unoccupied
states for m , N 2 1. Thus, M . N�N 2 1��2 and the
Chamon-Wen edge is formed [9]. The corresponding den-
sity and angular momenta at B � 3.0 T are shown in the
middle panel of Fig. 1. After reconstruction, the MDD
has thrown out a ring of separate lumps of charge den-
sity, with each lump containing one electron and having
a radius somewhat larger than the magnetic length �B.
This Chamon-Wen edge with broken rotational symme-
try is located at a distance of �2�B from the inner part
of the droplet, which continues to form a (smaller) MDD
with filling factor 1 in the dot center. With the recon-
struction of the droplet, fractions of angular momenta be-
tween m � 8 and m � 14 are moved to values above
m � 19. The total angular momentum now is raised to
M � 205.13. (Note that for the internally broken sym-
metry of the mean-field solution, the total angular mo-
mentum can take fractional values.)

The total current j�x, y� is plotted as a vector diagram
in Fig. 2. It shows vortices which are located around the
density maxima along the edge.

For still higher fields, rotational symmetry is also
broken for the inner parts of the droplet (see lowest panel
in Fig. 1). The reconstructed density forms a sequence
of rings, each consisting of well-separated maxima in
the electron density. Correspondingly, inside the droplet
the real current j�x, y� now forms vortices (see right
panel of Fig. 2) centered at the separate density maxima
along the rings. The localization of all electrons is
associated with opening a large gap at the Fermi level.
This had not been the case if only electrons along the
edge were localized, as the inner part of the droplet then
still was in the MDD phase. In the high-field limit, the
“bumpy” electron density is consistent with the numerical
results of HF calculations by Müller and Koonin [21].
Performing exact calculations for N # 6, Maksym [22]
found localized states using a rotating frame.

The broken symmetry of the Chamon-Wen edge is not
limited to small dots. Figure 3 shows the density and
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FIG. 2 (color). Real particle current j�r� for N � 20 at
B � 3.0 T (left) and B � 3.5 T (right), shown in the lower
left quadrant of the charge density. The maximum currents
are about 0.028 �nm ps�22 (at 3.0 T) and 0.035 �nm ps�22 (at
3.5 T). The shaded background indicates the charge density
distribution: areas colored in magenta correspond to the regions
with largest charge density.

angular momentum distribution of a dot with N � 42
electrons. Again the edge consists of nearly localized
electrons. The inner MDD at filling factor 1 is very
stable, with integer occupancy of angular momentum.
By analyzing the Kohn-Sham single-particle orbitals we
noticed that they fall into two discrete subsets, one
forming the MDD and the other forming the broken-
symmetry Chamon-Wen edge. This opens up a possibility
for collective excitations localized at the edge.

We finally study the formation of the MDD and its re-
construction systematically as a function of the electron
number. The resulting phase diagram is shown in Fig. 4.
We find three phase boundaries: the polarization transition
with the subsequent formation of the MDD, the broken-
symmetry Chamon-Wen edge phase, and finally the local-
ization phase [21] where the MDD completely disappears.
The range of magnetic fields where the MDD is a stable
ground state becomes much more narrow with increasing
N , as it has been noted in Refs. [7,9,23]. The phase bound-
aries are in good agreement with recent experiments by
Oosterkamp et al. [5]. (The fact that we find the transi-
tions between different phases at smaller fields is due to a
different electron density [24]). The experimental results
also show systematic changes in the chemical potential af-
ter the first appearance of the Chamon-Wen edge. This
might be related to the formation of rings and the stepwise
disappearance of the MDD, which has a similar depen-
dence of the number of electrons and the magnetic field.

FIG. 3 (color). As Fig. 1, but for N � 42 electrons and at a
magnetic field B � 2.7 T.
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FIG. 4 (color). Different phases for a quantum dot with N �
6, 12, 16, 20, 30 and N � 42 electrons at a density roughly
corresponding to rs � 2a�

B. The colored areas indicate regions
of magnetic fields where different phases (polarization, MDD,
reconstruction, and beyond) occur: The purple region indicates
the MDD phase, while the magenta region corresponds to the
Chamon-Wen edge regime. In the pink region localization
extends over the whole droplet.

We have exclusively investigated the reconstruction
in the regime where the droplet was completely polar-
ized and refer to [25,26] for a discussion about the ex-
istence of spin textures along the edges. Performing
fully unrestricted Hartree-Fock calculations, Karlhede and
Lejnell [25] as well as Franco and Brey [26] found
charge density wavelike modulations along the recon-
structed edge of a Hall bar. These results are simi-
lar to our finding of the broken-symmetry edge in finite
droplets.

In conclusion, we found that the maximum density
droplet reconstructs into Chamon-Wen edge states with
broken rotational symmetry in the internal coordinates.
For larger fields reconstruction continues by sequential
formation of rings up to an overall bumpy ground state
density. The transitions with increasing B define different
phases of the electron liquid inside the droplet. We
showed a phase diagram which displayed a systematic
separation between different phases of reconstruction both
as a function of dot size and magnetic field. The trends
for the shape of the phase boundaries between polarization
transition, MDD, broken symmetry edge reconstruction,
and finally localized states [21] are rather clear and
agree [24] with the phase diagram recently measured by
Oosterkamp et al. [5].
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