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I report on a theory of time-dependent tunneling between a metal and a partially spin-polarized two-
dimensional electron system (2DES). I find that the tunneling current which flows to screen an electric
field between a metal and a 2DES is the sum of two exponential contributions whose relative weights
depend on spin-dependent tunneling conductances, on quantum corrections to the electrostatic capaci-
tance of the tunnel junction, and on the rate at which the 2DES spin polarization approaches equilibrium.
For high mobility homogeneous 2DES’s at filling factor n � 1, I predict a ratio of fast and slow tun-
neling rates equal to �2K 1 1�2 where K is the number of reversed spins in the Skyrmion excitations.

PACS numbers: 73.40.Gk, 73.20.Dx, 73.40.Hm
There has been renewed [1] interest recently in nonequi-
librium spin accumulation [2] due to electronic trans-
port in spin-polarized electron systems, in part because
these accumulations are important in giant magnetoresis-
tance [3]. In this paper, I address spin accumulation in
the linear-response tunneling current between a metal and
a two-dimensional electron system (2DES). This work is
motivated in part by recent experiments by Chan et al.
[4] which have discovered unexplained two-rate tunnel-
ing currents in the quantum Hall regime, and also in part
by the long [5] spin-relaxation times of 2DES’s, espe-
cially long in the quantum Hall regime [6–8]. I find that
spin accumulation depends subtly on the interplay of spin-
dependent tunneling conductances, thermodynamic densi-
ties of states, and spin relaxation rates. According to this
theory, the double-rate current found in experiment signals
sizable quantum corrections to the effective capacitance
of the junction and spin-relaxation processes which depart
from those in conventional metals, both expected in the
quantum Hall regime. Gapped quantum Hall states lead to
rapid variation of the chemical potential [9] with density,
and the presence of Skyrmion elementary charged excita-
tions [10] requires an unusual spin-relaxation process. I
predict that, for homogeneous 2DES’s and thin tunneling
barriers, the ratio of fast and slow relaxation rates at n � 1
will equal �2K 1 1�2, where K is the number of reversed
spins in the lowest energy Skyrmion quasiparticles.

I start from the following phenomenological linear re-
sponse equations for tunneling between a metal and a
2DES:

�Q" � 2m"G" 1 �m# 2 m"�Gs ,

�Q# � 2m#G# 1 �m" 2 m#�Gs .
(1)

Here Qs and ms are the spin-s particle-number and
chemical potential, Gs characterizes linear-response spin
relaxation in the 2DES, and Gs is the spin-s tunneling
conductance. These equations express spin partitioning of
the tunneling current; the assumption of separate chemical
potentials for the 2DES spin subsystems is valid when the
spin-relaxation time is much longer than other characteris-
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tic scattering times in the 2DES. In these equations, I have
placed the zero of energy at the chemical potential of the
metal. The two terms on the right-hand side of Eqs. (1)
account, respectively, for tunneling across the junction into
the 2DES and relaxation of the 2DES spin subsystems to-
ward mutual equilibrium. A closed description of electron
transport in the system requires, in addition to the above
conductance equations, which relate currents to chemical
potential differences, a set of capacitance equations which
relate these chemical potentials to accumulated charges:

m" � 2V0 1 �C21�""Q" 1 �C21�"#Q# , (2)

m# � 2V0 1 �C21�#"Q" 1 �C21�##Q# . (3)

Here V0 represents the electrostatic contribution from
charges external to the 2DES. Elements of the inverse ca-
pacitance �C21� matrix have an electrostatic contribution
proportional to the width of the tunnel barrier and a quan-
tum “chemical potential” contribution due to the Fermi sta-
tistics and correlations of electrons in the 2DES;

�C21�ss0 �
1

Cg
1

1
A

dms

dns0

�
1

Cg
1 Fs,s0 , (4)

where Cg � Ae��4pe2d� is the electrostatic capacitance
of the junction, A is the cross-sectional area of the two-
dimensional electron system, e is the dielectric constant
of the host semiconductor, d is the distance between the
metallic electrode and the 2DES, and ms is the spin-s
chemical potential of the 2DES relative to its electric
subband energy. The notation above is motivated by the
analogy between Fs,s0 and Fermi liquid theory interaction
parameters. In the commonly employed Hartree mean-
field approximation,

Fs,s0 �
ds,s0

AD0
s

, (5)

where D0
s is the noninteracting 2DES density of states

per area per spin; the chemical potential increases with
density only because of the Pauli exclusion principle which
operates separately on spin-up and spin-down quasiparticle
© 1999 The American Physical Society
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states. More generally, however, the energy change on
adding an electron depends on the density of the existing
electrons of either spin with which the added electron must
correlate. dms�dhs0 is then nonzero for s fi s0. The
resulting correlation induced mixed-spin capacitance can
be important in producing spin bottlenecks if it is large, as
it is in the quantum Hall regime discussed below.

These equations can be used to describe various time-
dependent or ac linear transport experiments involving tun-
neling from a metal to a 2DES. The phenomenology is
readily generalized to the other cases, for example, to po-
tentially interesting 2D to 2D tunneling experiments. I ap-
ply it here to the situation studied recently [4] by Chan
et al. in which a chemical potential difference across the
junction is created by external charges and the tunneling
current which reestablishes equilibrium is measured as a
function of time. In an obvious matrix notation the con-
ductance and capacitance equations take the forms �Q �
Gm and m � 2V0 1 C21Q. Eliminating the chemical
potentials using the capacitor equations yields a set of
two coupled first-order inhomogeneous linear differential
equations for the time-dependent spin-up and spin-down
charges in the 2DES. Solving these with the boundary con-
dition Q"�t � 0� � Q#�t � 0� � 0 yields for the spin-
dependent currents into the 2DES

�Qs�t� � Is,1 exp�2t�t1� 1 Is,2 exp�2t�t2� , (6)

where t21
1 and t21

2 , generalized RC relaxation rates,
are the eigenvalues of A � GC21. I have obtained the
following explicit expressions for I",6:

I",1
V0

�
G"

2

µ
1 1

A"," 2 A#,#

t
21
1 2 t21

2

∂
1

G#A",#

t
21
1 2 t21

2

, (7)

I",2
V0

�
G"

2

µ
1 2

A"," 2 A#,#

t
21
1 2 t21

2

∂
2

G#A",#

t
21
1 2 t21

2

. (8)

The corresponding expressions for I#,6 are obtained by in-
terchanging spin labels. Figure 1 shows results for the
dependence of tunneling current on 2DES chemical poten-
tial near Landau level filling factor n � 1 obtained from
Eq. (8) using a noninteracting Skyrmion model described
below. These replicate major features found in experiment
[4]. The peak in both fast and slow relaxation rates is due
to the sharp decrease in capacitance as the n � 1 incom-
pressible quantum Hall state is approached. The tunneling
current is dominated by the slow process, except in a nar-
row range very close to n � 1 where the fast process takes
over. The origin of this crossover is explained below.

Similar results can be obtained for the instanta-
neous chemical potentials of the spin-up and spin-down
subsystems:

ms�t� � 2V0 1
X

s�6

ms,s�1 2 exp�2t�ts�� , (9)

where ms,6 �
P

s0 C21
s,s0Is0,6t6. I note that ms,1 1

ms,2 � V0; current flows until the electrochemical po-
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FIG. 1. Tunneling current between a metallic electrode and
a 2DES as a function of chemical potential near n � 1. The
chemical potential is in e2�� units, and the zero of energy is
chosen so that m � 0 at n � 1. The solid and dotted lines are
for fast and slow channels, respectively. The rate curves have
maxima near n � 1 while the capacitance curves (I1t1 and
I2t2) have minima near n � 1. These curves were calculated
using the noninteracting Skyrmion model explained in the text
to evaluate the quantum inverse capacitance contributions and
a separation d � 5� between the metal and the 2DES. Gs

and Gs were assumed to have the form 1000�Fs,s 1 10 and
1��F","F#,#� 1 0.01 in arbitrary units; the two terms represent
uniform system golden rule and inhomogeneity contributions,
respectively. The tunneling rates are in units of C21

g times the
arbitrary conductance unit, while the capacitances per unit area
are in units of �21. This figure is for kBT � 0.025e2��.

tential change for each spin cancels the electric potential
from external charges. The two spin subsystems are in
equilibrium at both the beginning and the end of the re-
laxation process, but are, in general, out of equilibrium
at intermediate times. The nonequilibrium spin accu-
mulation m"�t� 2 m#�t� � �m#,2 2 m",2� �exp�2t�t2� 2

exp�2t�t1��. The fast and slow contributions to the
current are readily separated experimentally, but their re-
lationship to spin subsystem contributions is not always
obvious. Nevertheless, we see that nonequilibrium spin
accumulations occur in the system between times t2 and
t1 whenever both contributions are present. In Fig. 2 we
plot time-dependent chemical potentials and accumulated
charges for the noninteracting Skyrmion model at m �
0.05�e2���. The majority spin chemical potential initially
overshoots so that the two chemical potentials approach 0
from opposite sides at long times. I note from Fig. 1 that
the slow tunneling current process actually dominates the
capacitance at this value of m; the naive view that the fast
process is purely current flow to the 2DES while the slow
process is purely spin equilibration is incorrect.

Before turning to the quantum Hall regime, where non-
equilibrium spin accumulations are large, it is instructive
to examine several limits for which spin accumulation does
not occur. For Fs,s0Cg ø 1 we find that t21

1 � �G" 1

G#��Cg, t21
2 ! 0, Is,1 � GsV0, and Is,2 ! 0. In
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FIG. 2. ms 1 V0 in units of V0 and partial accumulated
charge Qs�V0 as a function of time for the model of Fig. 1 at
m � 0.05e2��. The dashed lines show majority spin quantities,
while the solid lines show minority spin quantities. t0 is Cg
divided by the arbitrary conductance unit. At short times
both minority and minority spins tunnel into the 2DES. At
long times equilibrium is reestablished with the added charge
in the form of Skyrmions consisting of three majority spin
holes and four minority spin electrons. At intermediate times
the chemical potential of the majority spins exceeds that of
minority spins, causing flow from majority spins to minority
spins within the 2DES. Note that slow and fast processes
include both net current flow to the 2DES and spin reversal
in the 2DES, although the relative importances differ in the
two cases.

this limit, which usually holds for metallic electrodes,
spin-independent electrostatic contributions dominate
electrochemical potential changes; no nonequilibrium spin
accumulation occurs because the spin subsystems are
never driven from equilibrium. For strong tunnel barriers
(Gs ø Gs), on the other hand, t21

1 � Gs�F"," 1 F#,# 2

2F",#�, t21
2 � �G" 1 G#� �F","F#,# 2 F2

",#���F"," 1 F#,# 2

2F",#�, and the fast relaxation current I1 � I",1 1 I#,1 �
0. For this limit spin accumulation does not occur
because the relaxation processes are fast enough to main-
tain instantaneous equilibrium. Unlike the electrostatic-
dominance case discussed first, the tunneling current flows
at the slow rate t21

2 . A third more subtle limit in which
spin accumulation does not occur applies to Fermi gas
2DES’s in which we may ignore correlation contributions
to the chemical potential and the commonly adopted
forms Gs � cADs , Gs � csAD"D# hold. These expres-
sions result from golden rule estimates of quasiparticle
tunneling and spin-flip transition rates, respectively, c is a
constant which declines exponentially with the thickness
of the tunneling barrier, and cs is a constant dependent
on spin-orbit scattering strength in the 2DES. For this
model we find that t21

1 � c�1 1 �D" 1 D#��Cg�, t21
2 �

c 1 cs�D" 1 D#�, and all the weight is in the fast tun-
neling current. No spin accumulation occurs because the
spin subsystems are not coupled by interactions and the
ratio of tunneling conductances equals the ratio of the rates
3264
at which the chemical potentials increase with density.
Finally, we mention the case in which the 2DES is para-
magnetic to which we return below. For G" � G# and
F"," � F#,#, symmetry forbids spin accumulations. An
explicit calculation finds no weight for the slow tunneling
current and the rate ratio

t2

t1

�
G"�2�Cg 1 F"," 1 F",#�
�G" 1 2Gs� �F"," 2 F",#�

. (10)

None of these limits apply throughout the quantum
Hall regime. Near integer Landau level filling factors,
Fermi statistics and correlations in the 2DES, not elec-
trostatics, dominate the electrochemical potential changes
with density [9]. Equilibrium electronic states contain
[10] complex Skyrmion quasiparticles whose formation
from the fully spin-polarized n � 1 ground state cannot
be achieved by a single-particle process. Spin equilibra-
tion will therefore be slow [10]. The two spin systems
are intricately coupled so that the Fermi gas limit does not
apply. Furthermore, the 2DES will generally be strongly
spin polarized.

A simple model of the 2DES valid at low temperature
for n near one is obtained by ignoring interactions be-
tween Skyrmions. I obtain the following grand-canonical
ensemble expressions for the occupation probabilities of
the Nf � A��2p�2� Skyrmion quasielectron and quasi-
hole states with K excess reversed spins:

nKe � f�eK 1 Km" 2 �K 1 1�m#� , (11)

nKh � f�eK 1 �K 1 1�m" 2 Km#� . (12)

Here f�e� � �exp�e�kBT � 1 1�21 is a Fermi factor [11],
eK is the energy of a Skyrmion quasiparticle, �2p�2�21

is the density of a full Landau level, and we have cho-
sen the zero of energy so that quasielectron and quasi-
hole Skyrmion states have the same energy [12]. When
the spin subsystems are in equilibrium (m" � m# � m)
we can use Eqs. (12) to calculate the chemical potential,
given the Landau level filling factor. Equations (12) ex-
press the property that the Kth quasielectron Skyrmion is
formed by adding K 1 1 spin-down electrons to and re-
moving K spin-up electrons from the n � 1 ground state.
For noninteracting electrons only K � 0 quasiparticles
occur; for typical 2DES’s, on the other hand, the lowest
energy quasiparticles have K � 3 [13]. From Eqs. (12)
we calculate the following thermodynamic densities of
states, Ds,s0 � dns�dms0 for the coupled spin systems:

2p�2D"," �
X
K

��K 1 1�2D�eK 1 m� 1 K2D�eK 2 m�� ,

2p�2D",# � 2
X
K

K�K 1 1�

3 �D�eK 1 m� 1 D�eK 2 m�� ,

where D�x� � sech2�x�2kBT ��4kBT . In Fig. 3 we plot
quantum contributions to the model’s inverse capacitance,
obtained by inverting this density-of-states matrix. The
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FIG. 3. Quantum contributions to the inverse capacitance for
a 2DES near n � 1. The solid lines show the majority and
minority spin results for Fs,s for a noninteracting model which
contains only K � 0 quasiparticles. For the Skyrmion model,
F",", F#,#, and F",# are shown by dotted, short-dashed, and long-
dashed lines, respectively.

large peaks in inverse capacitance near n � 1 are respon-
sible for the peaks in both tunneling current rates. In
the low-temperature limit, only the lowest energy K � 3
Skyrmion will contribute so that for n . 1, F",", F#,#, and
F",# occur in the ratio �K 1 1�2:K2:K�K 1 1� � 16:9:12.
This contrasts with the noninteracting electron case for
which F"," is much larger than F#,# and F",# vanishes. (The
same ratios apply for n , 1 with inverted spin indices.)
For n � 1 the low-temperature equilibrium state charge is
added to the n � 1 state in the form of K � 3 Skyrmions;
i.e., for each four up spins added to the 2DES, three down
spins are removed. It follows that the time-integrated
spin-up and spin-down tunneling currents are approxi-
mately equal in magnitude and opposite in sign.

In contrast to the partitioning of total tunneling charge
between spins, which is determined purely by thermody-
namic considerations, the observable partitioning between
fast and slow components is difficult to understand intu-
itively in the general case. Simplification occurs, however,
when n � 1. It follows from particle-hole symmetry [12]
that at n � 1 the 2DES can be considered to be a para-
magnetic system of spin-down electrons and spin-up holes,
explaining the vanishing weight in the slow tunneling cur-
rent channel seen in Fig. 1 as the filling factor approaches
one. The ratio of fast to slow tunneling rates, Eq. (10)
depends only on thermodynamic quantities provided that
the tunneling barrier is thin enough that Gs ¿ Gs. Then,
provided that the temperature is sufficiently low that quan-
tum terms dominate the inverse capacitance we find that
t2�t1 � �2K 1 1�2 � 49, in rough agreement with the
findings of Chan et al. [4]. These considerations do not
account for the inhomogeneity present at integer filling fac-
tors in all current samples.
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