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Correlated Simultaneous Phason Jumps in an Icosahedral Al-Mn-Pd Quasicrystal
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A triple-axis neutron-scattering experiment has been performed on a large single-grain sample of an
icosahedral Al-Mn-Pd quasicrystal. The scattering plane in reciprocal space was a binary plane of the
quasicrystal. The intensities of the quasielastic signals collected were compared with model calculations
assuming isolated single-particle jumps along two-, three-, and fivefold axes of the quasicrystal. The
agreement turned out to be unsatisfactory. We were able to explain the experimental data only by
assuming the existence of correlated simultaneous jumps of several atoms.

PACS numbers: 61.44.Br, 63.50.+x, 64.70.Rh, 66.30.Fq
Both quasicrystals and incommensurately modulated
crystals (IC) can be derived from a common description
based on an embedding in a higher-dimensional superspace
that contains a periodic lattice of so-called atomic surfaces
[1,2]. This hyperspace crystallography leads also to the
possibility of an attractive analogy within the realm of lat-
tice dynamics based on the introduction of the notion of
“phasons” [3] in addition to the usual phonons [4]. Here
we stumble onto a first real difficulty. Once we go beyond
one-dimensional structures there are very important differ-
ences in the topology of the atomic surfaces between QC
and IC [5,6]. Generally speaking, the atomic surfaces in
QC are not continuous. Therefore phasons in QC are not
collective propagating modes as in IC but rather atomic
jumps, that can be visualized by configuration flips within
Penrose-like tiling models. Ensuing experimental studies
confirmed this picture [7–9]. In our current understand-
ing an atomic jump is a stochastic single-particle process.
The phonon heat bath produces a fluctuating environment
that from time to time will open a low-energy gateway that
is prosperous for a jump. Starting from this conceptual im-
age that thrives on disorder it is hard to imagine an orderly
concerted choreography of simultaneous jumps of two or
more atoms. A rigid slide of the entire cut in superspace
can thus not be a realistic notion in QC, and phasons in
QC and IC should correspond to very different, antipodal
types of dynamics. Tile flips in real, i.e., not monoatomic
structural models entail in general several simultaneous
atomic jumps. It was therefore inferred that the elementary
phason building brick would rather be the atomic jump
than the tile flip [10].

The aim of the present Letter is to point out the neces-
sity of a refinement to the common-sense based paradigm
sketched above, as in recent triple-axis neutron-scattering
experiments on a large single-grain sample of the icosahe-
dral phase Al-Mn-Pd we came across some evidence that
seems to challenge it. In fact, we found a Q-dependence of
the quasielastic signal that we are able to explain only by
assuming that two (or more) atoms jump simultaneously
keeping their separation vector fixed. Preliminary data of
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this long-standing triple-axis study have been published
as short conference communications [8], but their analy-
sis was partial and must be considered as superseded. The
present data were obtained with a different, substantially
larger sample. This resulted in much better statistics and
unambiguous results for the fits. Phason dynamics have a
bearing on many other issues in QC, such as stability, dif-
fusion, growth, phase transitions between QC and related
phases, high temperature superplasticity and crosschecking
structural models, but here we will address only the crucial
evidence for the simultaneous correlated jumps.

The quasielastic-neutron-scattering experiments were
performed with the cold-neutron double-monochromator
triple-axis spectrometer 4F2 of the LLB in the fixed
kf � 1.64 Å21 (DE � 100 meV) and kf � 1.97 Å21

(DE � 200 meV) configurations. The loci of some of
the constant-Q energy scans in the binary scattering plane
of the QC are indicated in Fig. 1, which also shows the
intensities of the most prominent Bragg peaks. If possible,
operating in the vicinity of the latter should be avoided

FIG. 1. Binary scattering plane. The sizes of the full circles
represent the intensity of the Bragg peaks. The locations of
the various constant-Q scans discussed in this Letter have
been drawn: They were all made in the kf � 1.64 Å21

configuration. The angle w is defined with respect to Qx .
© 1999 The American Physical Society
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in the scans as the wings of the resolution function tend
to flood the quasielastic intensity if the elastic signal is
too strong and the unwanted background of coherent
signals from acoustic phonons which scales with the
intensity of the Bragg peaks can really jeopardize the data.
The choice of the binary plane allows us to explore all
types of symmetry axes (twofold, threefold, and fivefold)
of the QC in one setup. The 3-cm3-sized single-grain
sample has been grown by the Czochralsky method. It
had the stoichiometric composition Al70.4Mn8.6Pd21.0. It
has been checked by neutron diffraction that it was not
contaminated by other individuals or other phases. A
curved-analyzer setting has been used in order to increase
the counting rates without appreciable losses in Q reso-
lution [11]. A (002) pyrolytic graphite filter was used
on the scattered beam in order to suppress higher-order
contaminations. Typical data-acquisition times were of
the order of 8 h per scan. Spectra were taken at 800 and
400 ±C. The latter data served as background checks. In
fact, a subtraction of the 400 ±C run from the 800 ±C run
yields a negative contribution in the elastic region (due to
the Debye-Waller factor), while one observes a positive
quasielastic signal, which proves that it is not due to the
wings of the resolution function. Such low-temperature
runs further confirm that there is no paramagnetic scat-
tering polluting the data as can also be inferred from
magnetization measurements with a superconducting
quantum-interference device [12]. Background scans
as a function of temperature were also made at fixed
points �v, Q� in reciprocal space in order to monitor the
contribution of the incoherent phonon background. This
background is not necessarily isotropic in a single-grain
sample due to the coupling factor Q ? ep , where ep is the
polarization vector of the phonon. The complete triple-
axis study comprised many more scans than shown in
Fig. 1. Its results with further details on experimental con-
ditions and data analysis will be published elsewhere [13].

A typical data set is featured in Fig. 2 together with a
fit based on a Lorentzian quasielastic signal convoluted
with the Gaussian resolution function. Also included in
this fit are the elastic peak and a linear incoherent phonon
background. The Q-dependence of the quasielastic in-
tensity for Q � 2.85 Å21 is displayed in Fig. 3. It is
strongly anisotropic. In a simple single-particle model in
the white-noise approximation [14] for atomic jumps be-
tween two sites separated by a jump vector d the quasielas-
tic intensity should follow an (incoherent) structure factor
Sq.e��Q� �

1
2 �1 2 cos�Q ? d� �. If this jump occurs along

a m-fold axis of the QC, then there are 30�m symmetry-
related jump vectors dj , such that one can expect

Sq.e��Q� �
30�mX

j�1

1
2

�1 2 cos�Q ? dj� � . (1)

This equation can represent three models, with m � 2,
m � 3, and m � 5 for jumps along twofold, threefold,
FIG. 2. Typical constant-Q scan with fit. The data shown
here correspond to jQj � 2.85 Å21 and w � 0±.

and fivefold directions, respectively. If the direction of
the jump is not along a symmetry axis, then the sums
will have to extend over the whole icosahedral group.
(This corresponds to the case m � 1). The quasielastic
and elastic intensities obey a sum rule such that the
incoherent elastic structure factor is obtained from Eq. (1)
by changing the sign in front of the cosine term:

Se��Q� �
30�mX

j�1

1
2

�1 1 cos�Q ? dj� � . (2)

The incoherent elastic structure factor is quite useless in
view of practical applications as the scattered intensities
are predominantly determined by the coherent neutron
scattering cross sections. For the quasielastic intensity
this coherence is not a source of problems as long as we
stick to uncorrelated single-particle behavior. Both elastic
and quasielastic intensities are in principle attenuated
by the Debye-Waller factor. The quasielastic structure
factors embodied by Eq. (1) all exhibit an isotropic first
local maximum in Q. This remains true if the direction of
the jump is not a symmetry axis. This is quite at variance
with the experimentally observed data which do not
display such a spherical shell of maximum intensity, and
on the contrary exhibit their strongest anisotropy at low Q.
We should point out that this discrepancy cannot be waved
away by invoking arguments that the signal could be
narrower at lower Q and as such would have been missed
by too coarse a resolution of the spectrometer. Previously
reported [9] time-of-flight experiments with very good
energy resolution on powder samples unequivocally
preclude such a loophole. We should point out that none
of the three models expressed by Eq. (1) can reproduce
the peak�valley-ratios that occur in Fig. 3, as is easily
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FIG. 3. Quasielastic intensities for jQj � 2.65 Å21 and
jQj � 2.85 Å21. A fit with model function (2) is also shown.
(Data collected with a second sample, both in kf � 1.64 Å21

and kf � 1.97 Å21 setups, bear out the reproducibility of these
results).

verified by plotting their angular intensity profiles for
various values of Q. This means that one needs an-
other type of model. By some serendipity we found
out that the data in Fig. 3 are described by Eq. (2) for
m � 3 and d � 3.85 Å. Among the (idle) lines of
thought we followed in our attempts to come to grips
with this alienating finding we can mention models
as proposed in [15,16] and down-sized versions of
Elser’s escapement model [10,17,18]. A full account
with many details will be given in a forthcoming pa-
per [13]. These models feature seven atoms on a do-
decahedron. The atoms can jump between first neighbor
sites but should always obey two rules: (1) Two atoms
should never be first neighbors, and (2) two atoms should
never occupy opposite sites on the dodecahedron. This
model has been analyzed and solved numerically in
Ref. [16]. The method applied can be used both for
coherent and incoherent signals. The atomic jumps in this
model occur along twofold directions. The refinement
with respect to Eq. (1) with m � 2 is that this model
involves complicated correlations between successive
3228
jumps. The final result for the calculated intensities is also
a mere refinement of that for Eq. (1) and does not alter
its gross features. Elser’s model is a further refinement
that consists of combining two such configurations in an
interlock. When the atoms are able to jump on one of the
dodecahedra, the jumps on the other one are blocked and
vice versa. Whether a dodecahedron is silent or otherwise
is determined by another atom that jumps between two
sites situated in between the two dodecahedra. The
experimental evidence is cogent: all models featuring
single jumps or correlated sequences of single jumps
are missing the point. The failure to represent our data
by such models helped us to realize where the minus
signs in front of the cosines in Eq. (1) come from. Each
time an atom jumps from A to an empty site B, the
neutron-scattering contrast between A and B is inverted,
which amounts to a p flip of its phase. Therefore, the
only way to obtain a plus sign is by designing a model
that preserves the contrast despite the occurrence of the
jump. This can be achieved only by admitting that two
atoms in A and B are jumping simultaneously to A0 and B0,
respectively, whereby the vectors AB and A0B0 are equipol-
lent. This leads to expressions of the type Sq.e��Q� �P30�m

j�1
1
2 �1 2 cos�Q ? dj� � �1 1 cos�Q ? sj� �, where the

correlation vector sj is analogous to the separation vector
AB. The �1 2 cos�Q ? dj� � parts are responsible for the
first radial maximum, while the �1 1 cos�Q?sj� � terms
entail a modulation of this local maximum that otherwise
would have been an isotropic spherical shell.

At once, this means that phasons in QC could neverthe-
less have some collective character, making them (unex-
pectedly) more similar to the propagating phason modes
that are typical of IC. It should be mentioned that such
a feature of simultaneous jumps occurs as an unavoid-
able consequence of the specific decoration of the atomic
surfaces in many structural models. This happens, among
others in models designed by Beraha et al. [19], and Zeger
and Trebin [20]. As pointed out above, such collective
motion clashes with our Weltanschauung, as we were
strong believers of the heat-bath-driven scenario outlined
above [21]. We must admit in all fairness that already
before us a number of colleagues had expressed the opin-
ion that phason dynamics in QC could have a collective
aspect [22,23]. In fact, Rivier mentioned it explicitly in
connection with the model of Zeger and Trebin. Trebin
has evoked an image of a wave of collective jumps as an
elastic response of the quasiperiodic medium to a periodic
external source of deformation, e.g., in a vibrating-reed
experiment. Such an elastic response must then be gov-
erned by the phason elastic constants.

We must signal that the description of the data by Eq. (2)
breaks down at higher Q values, where we are unable to
explain the observed intensities [13]. At 2.65 and
at 2.85 Å21 we are so lucky to find ourselves in the small-
Q limit, where the largest characteristic distance within
the dynamics can be discerned in an isolated fashion, free
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from the obfuscating presence of signals corresponding to
shorter length scales.

In conclusion, we have made neutron triple-axis experi-
ments on phason hopping in a large single-grain qua-
sicrystal and discovered a very unusual Q-dependence of
the quasielastic signal. We think that this novel result
constitutes an important step towards the elucidation of
the physical nature of phasons in QC.

The authors would like to thank K. Zoungoula for his
participation in this experiment, and P. Boutrouille and
P. Baroni for skilled technical assistance.
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