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New measurements of chain self-diffusion �D� in highly entangled hydrogenated polybutadiene
solutions and melts indicate that D � M22.360.1, where M is the molecular weight. Although these
results contradict the widespread belief that in melts D � M22.0, we demonstrate that in fact the
literature data for seven different polymers are consistent with D � M22.2860.05. This result largely
removes a recalcitrant discrepancy between the M exponents for D and the viscosity. Important
implications for theoretical approaches are also noted.

PACS numbers: 61.41.+e, 62.10.+s, 66.10.Cb
The reptation model is the cornerstone for our current
understanding of the dynamics of entangled flexible poly-
mers [1,2]. It is able to capture in a qualitative way, and
in many cases a nearly quantitative way, an impressive va-
riety of experimental phenomena concerning the rheologi-
cal and diffusion properties of linear and branched chains
[3]. Nevertheless, there are several persistent discrepan-
cies between the predictions of reptation and the reported
experimental results that constitute an important challenge
to the model. It is the intent of this Letter to demonstrate
that two of these discrepancies may now be resolved.

The fundamental assumption of the reptation model is
that the topological restrictions presented by intertwined
neighboring chains constrain a given chain to diffuse along
its own contour. At a given instant in time, t0, the entan-
glement constraints around a test chain define a tube along
which the chain executes a one-dimensional random walk.
As either chain end departs from this tube, it executes a
three-dimensional random walk, which ultimately random-
izes the conformation of the chain relative to that prevail-
ing at t0. Similarly, when a chain end diffuses further into
the original tube, that portion of the tube is relaxed. Stress
relaxation in this model is equivalent to a loss of orienta-
tional memory, and thus the viscosity (the integral over
the stress relaxation modulus) is determined by the time
to escape completely from the tube, t1. During this inter-
val the chain center of mass also moves an rms distance
proportional to the chain radius of gyration, Rg, and thus
the diffusivity �D� and viscosity �h� are intimately related.
Specifically, the model predicts that t1, and therefore h,
scales with molecular weight, M as [2]

h � t1 � M3, (1)

whereas experimentally h � M3.460.2 for a wide range
of different polymer materials and up to numbers of
entanglements per chain, M�Me [4], approaching several
hundred [3,5]. Concurrently, D is predicted to scale as

D �
R2

g

t1
� M22. (2)
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This M dependence has been reported to be consistent with
experimental results for melts of various polymers [2,3,6],
including polystyrene (PS) [7–11], polyethylene (PE) [12–
18], and hydrogenated polybutadiene (hPB) [19–23]. The
difficulty thus presented is, if additional modes of motion
change the M dependence of t1 and h, up to and be-
yond 102 entanglements per chain, why do they not in-
fluence the M dependence of D, which is also related to
t1? This apparent inconsistency between the h and D
exponents has long been recognized [24], and has even
been termed “. . . one of the biggest remaining mysteries
in polymer physics” [25]. It is important to note that al-
though it certainly presents a severe challenge to reptation,
it also is problematic for any model, as it implies a signifi-
cantly different M dependence between chain rotation and
translation.

The original reptation model was formulated for an
unattached chain trapped in a cross-linked network [1].
In polymer liquids the surrounding chains that constitute
the entanglements are also free to diffuse and relax
stress. Consequently there will be some finite rate of tube
erosion at any point along the tube, not just the ends;
this inherently interchain process is termed “constraint
release” (CR), and has been considered by many authors
[3,26]. Doi first noted that random fluctuations of the
position of the test chain ends within the tube, even with
the chain center of mass fixed, would erase some tube
segments [27]. As the spatial extent of such “contour
length fluctuations” (CLF) should scale approximately
with

p
M, this intrachain mechanism could enhance the M

exponent for h by about 0.5. Milner and McLeish have
recently developed a more complete version of CLF that
gives an exponent ca. 3.4 for t1 [28]. Both CR and CLF
accelerate the escape from the tube, and consequently
reduce h and increase D. This is the right direction to
bring theory into better agreement with experiment, but
to date there has not been a self-consistent treatment of
both CR and CLF that describes the viscoelastic properties
and the diffusivity simultaneously. Other nonreptative
models have also been proposed, and, in particular, the
© 1999 The American Physical Society
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polymer-mode-coupling (PMC) theory of Schweizer and
co-workers is able to reconcile the differing exponents
for h and D, and the apparently nonuniversal character
of the crossover to the high M exponents anticipated by
reptation [29–31].

Measurements of D in concentrated solutions and gels
have generally produced M exponents in the vicinity of
22.4 to 22.5, and clearly stronger than 22 [32–38].
These exponents reflect data extending up to 102 entan-
glements per chain, and are therefore not easily dismissed
as a crossover effect associated with the transition from
unentangled to entangled behavior. The viscosity of well-
entangled solutions, however, follows h � M3.4 just as in
the melt [5,39]. These results raise the possibility of a
fundamental difference between the dynamics of entangled
chains in the melt and in the solution, which is not antici-
pated by reptation theory (but which can be accommodated
within the PMC framework [29–31]). However, the so-
lution results are free of the inconsistency between the h

and D exponents; in this light it is the M exponent of D in
the melt that is most puzzling.

We recently undertook a thorough examination of the
M and volume fraction �f� dependences of D and h for
a series of hPB in n-alkane solvents, in an attempt to gain
further insight into these issues [40,41]. This system was
chosen because the low value of Me (ca. 950 g�mol) yields
well-entangled solutions even for a rather modest f, and
because the low glass transition temperature minimizes
any f or M dependence to the segmental dynamics,
which would otherwise complicate the analysis. We found
that h � M3.4 for all entangled solutions, consistent with
previous results, and we also found that D � M22.460.1 for
concentrated solutions, in agreement with the results for PS
[33–35]. However, our data indicated that D � M22.4

even in the melt [40,41], in apparent disagreement with
several other groups. Consequently, we have collected all
of the reported values of self-diffusion for entangled hPB
melts [18,20–23], and they are plotted as a function of
M in Fig. 1. (We restrict attention to M�Me . 2.5, to
correspond to the regime for which h � M3.4.) A least
squares fit to a power law gives the indicated straight line:
D � M22.3060.05. The quoted uncertainty is determined
by linear regression with a greater than 95% confidence
interval. We thus conclude that, contrary to widespread
belief [2,3,6], the experimental scaling law for entangled
hPB melt diffusion is not D � M22.0. Previous workers
have successfully interpreted their data in terms of a
high M asymptotic exponent of 22.0, combined with CR
contributions at lower M�Me [22,23]. This viewpoint has
been bolstered by extensive tracer diffusion measurements
in high M matrices [9–11,19] which indicate that (a) self-
diffusion is faster than tracer diffusion in a high M matrix,
and that (b) the resulting tracer diffusivities scale as M22.0.
We are not arguing against, or even contradicting, this
approach; rather, we simply ask whether self-diffusion can
be well represented by a single power law in M, and if so,
what is the associated exponent? (It is exactly this direct
FIG. 1. Melt self-diffusion data for hydrogenated (or deuter-
ated) polybutadiene samples adjusted to 175 ±C, as a function
of molecular weight.

approach that yields the value 3.4 for h.) The importance
of the result in Fig. 1 is that it largely reconciles the
two issues above, at least for this polymer. First, the M
exponents for D and h are consistent within the combined
experimental uncertainty, and therefore the processes that
reduce t1 relative to the bare reptation prediction appear
in both quantities. Second, there is no need to invoke
different dynamic modes of motion for solutions and melts.

The data in Fig. 1 require additional comments. First,
they were acquired at different temperatures (125 ±C
[20,21], 140 ±C [40,41], 170 ±C [22], and 175 ±C [23]),
and have been reduced to 175 ±C by the known T de-
pendence of D for hPB over this measurement range
[23,40,41]. Second, the self-diffusion data were deter-
mined by several techniques: pulsed-field gradient NMR
[23,40,41], infrared microdensitometry [22], small-angle
neutron scattering [20], and forward recoil spectrometry
[21,40,41]. Third, the reduction to a master curve is re-
markable, given the previous two points and the difficul-
ties in determining accurate M values for polymers that
are not soluble in organic solvents at modest tempera-
tures. Fourth, the data have been corrected for the M
dependence of the segmental friction, following the care-
ful analysis of Pearson et al. [23]. Fifth, we have treated
each pair of reported values �D, M� as equally reliable,
i.e., any systematic errors among the different research
groups or measurement techniques are viewed as random
errors in the global fit. It is conceivable that a more de-
tailed parsing of the data might conclude that some points
are more reliable than others, but at this time we have no
basis for doing so, and furthermore the resulting exponent
is rather insensitive to the exclusion of any small subset
of the data (e.g., if our own data [40,41] were excluded
the exponent would become 22.26).
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The M dependence of D may be more fairly revealed
by plotting DM2 vs M�Me, as shown in Fig. 2; in this
format any deviations from the predicted M22 are more
clearly exposed. The data are shown with error bars,
which we estimate conservatively as 610% for M and
630% for D. There is a distinct trend to lower values
as M�Me increases, but there is some indication that the
data level off beyond M�Me � 102. In this plot we also
show the asymptotic, high M reptation prediction for D as
a horizontal line,

kD � DM2 �

µ
2GNR2

g

45M

∂ µ
rRT
GN

∂2µ
Mc

h�Mc�

∂
. (3)

This expression was developed by Graessley [42] in or-
der to replace model parameters with experimental observ-
ables: GN is the plateau modulus, r is the density, and Mc

is the critical molecular weight for the crossover to entan-
glement effects in h [5]. However, there is still uncertainty
of up to 650% in the resulting value of kD , due primarily
to the last term on the right-hand side of Eq. (3). Nev-
ertheless, it is clear that the data are converging upon the
reptation prediction at high M, and that the degrees of mo-
tional freedom neglected in the strict reptation model en-
hance the mobility. The dashed line in Fig. 2 represents
the prediction of the strict reptation model for D, but based
on experimentally determined (viscosity-based) longest re-
laxation time t1 [2],

D �
2R2

g

p2t1
�

GNR2
g

6h
. (4)

Here R2
g � 2 3 10217 M �cm2�, GN � 2.3 3 107 dyn�

cm2, and h � 3.43 3 10213M3.42 (poise) [23,40,41,43].
This comparison confirms that the experimental M depen-
dences of D and h are fully consistent within the experi-
mental uncertainties.

FIG. 2. Data from Fig. 1 replotted as DM2. The horizontal
line represents the prediction of the bare reptation model,
and the dashed line the prediction utilizing the experimentally
determined longest relaxation time, as discussed in the text.
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Melt self-diffusion data exist for many other entangled
chemical systems: PE [12–18], polyisoprene (PI) [44],
PS [7–11], polybutadiene (PB) [44], polyethyleneoxide
(PEO) [45], polydimethylsiloxane (PDMS) [45], and poly-
methylstyrene (PMS) [9]. PE is, in fact, structurally very
similar to hPB, and if the PE data were simply super-
posed on the hPB data in Fig. 1, the scatter would in-
crease but the M exponent remains essentially the same.
The hPB data are to be preferred, because the PE samples
are relatively polydisperse. For each of the other poly-
mers the data for M�Me . 2.5 were fit to a power law in
M. (Data for any M , 5000 were also excluded, to mini-
mize friction factor effects.) The exponents ranged from
ca. 22.0 for PI [44] to 22.4 for PEO [45] and PMS [9].
These power laws were used to estimate D�M � 10Me�,
a reference point which fell within the range of each
data set. All these data, plus those from Fig. 1, are col-
lected as a master plot of D�D�10Me� vs M�Me in Fig. 3.
The fit gives an exponent of 22.28 6 0.05 (95% confi-
dence). These results demonstrate that entangled polymer
melt self-diffusion coefficients universally scale with an
exponent significantly stronger than 22.0. A fit to the
non-hPB data gives an exponent of 22.17, raising the
possibility of a nonuniversal response; however, the range
of the independent variable is much smaller for these
polymers. A crossover to 22.0 at higher M�Me is sug-
gested but not established definitively by these data; such
a crossover might also be nonuniversal. Finally, exten-
sive measurements of tracer diffusion in high M matrices
for PS and hPB are certainly supportive of an asymptotic
22.0 exponent.

Deutsch and Madden simulated the motion of unat-
tached chains in a cage of fixed obstacles [46]. They found
D � M22.4 and t1 � M3.4, a result which at the time was
rather puzzling [46], but now we may consider to be in

FIG. 3. Data from Fig. 1, combined with data for six other
polymers from the literature, along with the global power
law fit.



VOLUME 83, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 18 OCTOBER 1999
agreement with experiments. More recently Reiter also
found similar scaling laws: D � M22.4 and t1 � M3.5

[47]. Rubinstein proposed an elegant discretized version
of reptation, the “repton” model, which gives t1 � M3.4

[25], and D � M22.4 when evaluated in three dimensions
[46,48]. Collectively, these results suggest that account-
ing for CLF modes correctly could be sufficient to repro-
duce the experimental scaling relations, as there are no CR
processes in these simulations. A recent extension of the
Milner-McLeish [28] treatment of fluctuations also gener-
ates diffusion exponents close to 22.4 [49], which sup-
ports this contention. On the other hand, the extensive
tracer diffusion data clearly demonstrate that D decreases
as the matrix molecular weight is increased [9–11,18],
which cannot be accounted for by CLF. Consequently,
an appropriately self-consistent incorporation of both CLF
and CR into reptation theory is essential. The PMC theory
is fully capable of reproducing the effects of both CLF and
CR, in the framework of a more fundamental but possibly
less transparent liquid state theory [29–31]. Both repta-
tion and PMC theory require a crossover to D � M22 at
high M, but as yet, the data do not extend to sufficiently
large M�Me to establish this crossover beyond doubt. In-
terestingly, an alternative model for cooperative dynamics
of fractal objects anticipates the correct finite M�Me ex-
ponents, but explicitly rejects a crossover to the reptation
exponents at higher M�Me [50]. Measurements to signifi-
cantly higher M�Me would therefore clearly be interesting,
albeit extremely challenging. The available data imply a
persistent slight discrepancy between solution and melt ex-
ponents, and between melt exponents for hPB and other
polymers; both issues bear further investigation.
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