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Oscillons and Propagating Solitary Waves in a Vertically Vibrated Colloidal Suspension
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The observation of localized stationary structures, coined oscillons, in granular media has evoked
much interest. By parametric excitation of clay suspensions, we demonstrate a hysteretic transition
to oscillon-type states in a nongranular medium. When the symmetry of up-down reflection 1 time
translation is lost, these states undergo a transition to propagating localized states previously seen in
Newtonian fluids. These observations are in accord with recent theoretical predictions of sufficient
conditions for oscillon formation. In addition, a novel measurement technique for the effective
suspension viscosity demonstrates their shear-thinning properties.

PACS numbers: 47.35.+ i, 05.45.Yv, 47.54.+r, 82.70.Dd
Recent experiments in dissipative 2D nonlinear pattern-
forming systems [1,2] have observed stable highly lo-
calized states that coexist with a featureless, pattern-free
state. A similar type of excitation generates both os-
cillating localized structures in granular media, coined
oscillons [1], and propagating dissipative solitary states
in Newtonian fluids [2]. Oscillons are localized, nearly
stationary circular regions that oscillate between conical
peaks and craters with a period of half of the external driv-
ing frequency. They appear with finite initial amplitude in
a hysteretic region between patterns and featureless states.
Propagating dissipative solitary states (DSS) are large am-
plitude, highly localized propagating states that appear in
highly dissipative fluids and have the temporal periodicity
of the driving.

How general are these states and what causes their lo-
calization? As their period has no amplitude dependence,
both oscillons and DSS differ from localized states, such
as in convecting binary mixtures, that are stabilized via
the interplay between their amplitude and internal phase
[3]. Stable oscillons were first observed theoretically in
an extension of a Swift-Hohenberg (SH) model, with real
coefficients, that exhibits a subcritical transition from pat-
terns to stable oscillon structures [4]. Further work on real
SH models suggested that large hysteresis together with
reflection 1 discrete time translational symmetry are [5]
sufficient conditions for oscillons to exist. These models
suggest [4,5] a general (nonadiabatic) localization mecha-
nism caused by the pinning of the large-scale envelope by
the small-scale underlying periodic pattern [6,7].

The subsequent observation of oscillons in a variety of
continuum and discrete models [8] suggests their gen-
erality. As described below, our experiments in verti-
cally vibrated clay suspensions confirm this. Suspensions
provide a bridge between Newtonian fluids and dry granu-
lar media as interactions between minute suspended par-
ticles are mediated by the fluid between them. They are
non-Newtonian and their shear-thinning character will be
demonstrated. We will show that both oscillons and DSS
are observed in these fluids, and support for the above lo-
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calization mechanism is indicated. We find the two states
to be related; oscillons undergo a transition to DSS once
the system’s vertical reflection symmetry is broken.

Our experimental system [2] is characterized by the
quantities f, h, r, and n defined, respectively, as the
externally imposed driving frequency, suspension depth,
density, and kinematic viscosity. A layer of suspension
is vertically (parallel to gravity g) driven with a displace-
ment z�t� � a�v2 sin�vt�, where a is the externally ap-
plied acceleration and v the angular excitation frequency.
The dimensionless acceleration amplitude, G � a�g, can
be viewed as the system’s control parameter. At a criti-
cal value Gc the initial spatially uniform fluid state loses
its stability. In our experiments we used both 20 cm
square and 29 cm in diameter circular containers with
0.4 , h , 4.0 cm. The fluid rests on an aluminum plate
with Plexiglas lateral boundaries. The working cell was
mounted on a mechanical shaker providing vertical ac-
celeration from 0 to 30g. The range of driving frequen-
cies used (between 10–60 Hz) was limited from above
by the maximal output force of our shaker (225 N) and
from below by its maximum stroke (1.25 cm). The ac-
celeration, regulated to within 0.01g, was monitored con-
tinuously by a calibrated accelerometer. Visualization
was performed by the scattering of diffuse stroboscopic
backlight (1 msec illumination time) by the fluid surface.
A video camera (JAI MV-30) with frame rates between
60–360 Hz was used to photograph the resulting wave
states. The working suspensions were a mixture of wa-
ter with commercial clay powder supplied by Negev Ce-
ramics; this clay is composed of kaolinite ��60%� and
quartz (25%–30%) with a mean grain size of 4.5 mm.
The volume fraction, f, of the dry clay was varied from
0.155 to 0.185 corresponding to density variations of
1.26 to 1.33 g�cm3. The suspension density, r, is fit by
r � 0.98 1 0.7f 1 6.31f2.

In Newtonian fluids the initial instability is generally
to standing surface waves. In the suspensions used,
the initially flat layer, upon losing stability, erupts into
highly hysteretic, extremely large amplitude fingerlike
© 1999 The American Physical Society
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states. To facilitate quantitative investigation, we limited
ourselves to the study of the system’s dynamics solely
within the subcritical region. This was accomplished by
mechanically introducing an O�h� protrusion on the fluid
surface by either striking or blowing compressed air on
the suspension surface while increasing the acceleration
at a fixed frequency until a O�10%� hysteretic transition
from the featureless state to oscillons is observed. Despite
the crude nature of the perturbation, the transition to
oscillons was reproducible to �1% 2%. We define Gtran
as the threshold to the flat state upon decreasing G. Near
Gtran either a single oscillon or oscillon pair is excited
(Figs. 1a and 1b).

As in [1] oscillons oscillate with frequency f�2 with
states p out of phase able to coexist. For G . Gtran
oscillons can interact to form localized patterns such
as the triad structures of in-phase oscillons, shown in
Fig. 1c. Depending on both the driving amplitude and
initial conditions, both short oscillon chains, composed
of either like- or unlike-phase oscillons, and localized
patterns of oscillons, with an internal hexagonal symmetry,
have been observed. One important difference between
oscillons observed in suspensions relative to those seen in
granular media is [9] the range of their interactions. In
suspensions, oscillons attract each other when separated
by distances greater than their radius. In granular media
the interaction distance is much shorter, typically a small
fraction of an oscillon radius. (This may be due to the
different degrees of shear thinning in the two media.) As
observed in [1,5] increase of G leads to the formation of
oscillon chains that tend to elongate by adding additional
“links” in one direction while widening in the transverse
direction. For large enough G this process eventually fills
the entire cell with stripes. Further increase of G leads
to distortion of the stripes and, eventually, to fingerlike
states and droplet ejection. As the phase diagram in
Fig. 2 shows, in contract to granular media, both oscillons
and striped patterns are observed throughout the entire
explored range of frequencies. The lower threshold, Gpat,
for the formation of patterns is typically reproducible to
within 2% whereas the upper threshold for patterns is

FIG. 1. Typical side view of localized states with
r � 1.28 g�cm3, h � 4 cm, frame widths � 4 cm. (a) Single
oscillon, f � 14 Hz. (b) Oscillon pair, f � 20 Hz.
(c) Oscillon triad f � 25 Hz. Two driving periods are
shown for each sequence.
strongly hysteretic and dependent on plate leveling. When
G is decreased from a patterned state to below Gpat, the
patterns decay into long chains of oscillons that gradually
contract in length. Bending and rotation accompany the
chain’s contraction. Finally, the oscillons lose stability to
the featureless state at Gtran. The most robust states are
bound pairs of opposite “polarity” oscillons.

Changes in suspension depth do not lead to any quali-
tative changes in the system’s behavior until a critical
frequency where the oscillon amplitude A (typically, A
is of order a�v2, the excitation amplitude) approaches
h. Below this frequency, a transition from oscillons to
propagating states occurs that corresponds to the breaking
of the A ! 2A symmetry for t ! t 1 2�f. Photographs
of a typical propagating solitary structure are displayed in
Fig. 3a. Whereas the oscillons are subharmonic stand-
ing waves oscillating at frequency f�2, these propagating
solitary states are similar in appearance to those seen in
highly dissipative Newtonian fluids (Fig. 3b). They are
harmonic with the driving with their structure repeating
itself over a basic period of 1�f [2]. The 3D struc-
ture of the states shown in the figure is representative
and is independent of the driving frequency and fluid pa-
rameters. As Fig. 2 shows, the phase diagrams for the
different heights are nearly identical until the transition to
propagating states (DSS are observed below f � 20 Hz
in the figure). The appearance of propagating states is ac-
companied by a smooth increase in Gtran, relative to the
value observed for the oscillon state. A time sequence of
a typical state appearing at the transition to propagating
states is presented in Fig. 3c. Although these transition
states do not propagate, they are seen to sway in the lateral
direction. Their form suggests a mechanism by which the
subharmonic oscillon becomes a propagating state whose
time dependence is harmonic with the driving frequency.

FIG. 2. Phase diagram of a clay suspension with
r � 1.28 g�cm3 for h � 4.0 cm (triangles) and h � 0.8 cm
(circles). Shown are the lower stability boundaries, Gpat
(open symbols), for patterns and Gtran (filled symbols), for
oscillon or propagating solitary wave states. The dashed
line schematically indicates the transition to highly hysteretic
fingerlike states, the system’s first instability. Both oscillons
and patterns exist in the subcritical region of this state.
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FIG. 3. Typical pictures of propagating solitary states in
(a) a polydisperse colloidal suspension with r � 1.2 g�cm3,
h � 0.7 cm, f � 15 Hz; (b) in a Newtonian fluid
(TKO-FF pump oil) h � 0.15 cm, f � 30 Hz, n � 0.81 St
�1 St � 1 stoke � 1 cm2�s�; (c) a transition state between os-
cillons and solitons h � 0.8 cm, r � 1.28 g�cm3, f � 14 Hz.
The sequences in (a) and (b) were taken over a single period
of the driving frequency. The sequence in (c) was taken over
80 msec intervals. Frame widths are (a) 15.5, (b) 2.6, and
(c) 6.3 cm. Time increases from top to bottom.

Let us first consider the motion of an oscillon whose
amplitude is much smaller than the height of the system.
Its peak occurs when the plate is at its minimum. In the
rest frame of the upwardly accelerating plate, the material
within the initial peak accelerates downward toward the
bottom of the plate. The momentum within this material
is sufficient to drive it below the fluid surface, creating
a crater at the next minimum plate height. To create the
crater, the material below the original peak is displaced in
the lateral direction. When the fluid depth approaches the
oscillon amplitude, the crater is again formed at the next
minimum of the plate height, but now the displaced fluid
acquires both an upward as well as a lateral displacement.
As a result, the lateral boundaries of the crater now form
an upward protrusion (see Fig. 3c), which is not evident
in the pure oscillon state (Fig. 1a). Thus, the vertical
symmetry breaking incurred by the interaction with the
lower boundary leads to a protrusion of the fluid surface
that is displaced laterally, by at least a crater radius, every
period of the driving. As upon external perturbation of the
fluid, when the disturbance is large enough, the protrusion
can, itself, create an additional crater and propagation,
which breaks the cylindrical symmetry of the initial crater,
ensues. In granular materials, however, oscillons with
amplitudes over 4h have been observed [1] while DSS
were not seen, although large-amplitude oscillons will
tend to sway periodically in the lateral direction [9].
One reason for their lack of lateral movement may be
that, in granular materials, dissipation increases with the
medium’s height. This would tend to suppress the above
propagation mechanism.

Let us consider the localization mechanism of the
oscillon state. In [4,5] localization is due to a mechanism,
originally suggested by Pomeau [6], whereby a front sepa-
rating bistable periodic and featureless states is pinned.
The stability of such fronts was calculated in a subcriti-
cal SH model by Bensimon et al. [7]. They predicted that
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the front should be stabilized over a finite width, De �
exp�2a�e1�2�, of the control parameter e. Estimating e

by �Gpat 1 Gtran��2 and De by �Gpat 2 Gtran�, Crawford
and Riecke [5] observed this scaling in numerical studies
of oscillon states. They suggested that the scaling, which
was not seen in [1], is masked in granular materials.
We have checked the predicted scaling in suspensions
for a number of different values of f and h (Fig. 4).
Although our range in both De and e is limited, all of our
measurements are compatible with this prediction, with a

consistently within the range 1–3.
Let us now consider the characterization of the clay

suspensions. As n is a strongly dependent function of
the shear rate, it is difficult to accurately characterize the
effective viscosity of a suspension. Since commercial vis-
cometers rely on the knowledge of a known flow state, the
highly non-Newtonian character of suspensions precludes
their use. Studies of parametrically driven surface waves
in Newtonian fluids have established [10] the accuracy of
the numerical code developed by Kumar and Tuckerman
[11] for calculation of the critical acceleration, Gc, and
wave numbers, kc, at the instability threshold. For given
values of h and r there is only a single combination of f
and n that yields a given kc and Gc. We propose to use
these calculations to determine n for our suspensions. As
input to the code we use Gpat, corresponding to the lowest
amplitude steady-state wave observed, together with f, h,
and r. We then solve for both n and kc. We use Gpat in-
stead of the suspension’s measured threshold value of Gc

for the following reason. As we shall see, in the suspen-
sions used n is a strongly decreasing function of f. At
Gc there is no relative motion between the fluid and the
container and the effective viscosity of the suspension is
at the f � 0 limit. Once motion is initiated, n decreases
significantly and this lower effective dissipation provides
positive feedback to the motion. Thus, the suspensions

FIG. 4. Comparison of the region of existence of oscillons
with the scaling prediction De � exp�2a�e1�2� of [5,7] (due
to nonadiabatic pinning of the front separating patterns and flat
states). Here e � �Gpat 1 Gtran��2 and De � �Gpat 2 Gtran�.
Data sets for r � 1.28 g�cm3, h � 0.8 cm (circles) and r �
1.28 g�cm3, h � 4.0 cm (squares) are shown.
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FIG. 5. (a) Measured wave numbers for h � 0.8 cm, r �
1.28 g�cm3 (squares) and h � 4.0 cm, r � 1.28 g�cm3 (cir-
cles). The solid and dashed lines are the respective wave
numbers calculated for a Newtonian fluid [11]. (b) Calcu-
lated kinematic viscosity (with Gpat as input) as a function of f
for h � 3.0 cm, r � 1.33 g�cm3 (squares), h � 4.0 cm, r �
1.26 g�cm3 (circles) and for h � 0.8 cm, r � 1.28 g�cm3 (tri-
angles). (Inset) Log-log plots of data in (b) demonstrating
�1�f behavior.

shear-thinning character may lead to both the large
hysteresis in G and the high amplitude fingerlike eruptions
that occur immediately at the onset of motion.

We check the validity of this approach by using
the value of n obtained above to predict kc. The
calculated and measured values of kc, as shown in
Fig. 5a, agree to within 10%. This provides a posteriori
justification for the use of the calculated viscosity as an
accurate measure of n. The frequency dependence of n

(Fig. 5b) indicates the shear-thinning behavior of these
suspensions. Our experiments using 0.155 , f , 0.185
indicate an approximate 1�f dependence, with some small
systematic variations. These observations agree with the
predictions for n obtained in recent calculations [12]
of the shear-rate dependence of a 30% suspension of
spheres. Shear thinning with a 1�f dependence has
also been observed in dynamic viscosity measurements
of suspensions of hard spheres for f . 0.30, within an
oscillating flow [13].

In conclusion, our experiments indicate that the ex-
istence of highly localized states such as oscillons and
propagating solitary states may be quite general. Oscil-
lons are observed for the first time in a medium that is
significantly different from granular media. Our results
are consistent with recent theoretical predictions of suffi-
cient conditions for oscillons’ appearance, i.e., hysteresis
together with reflection 1 discrete time translational sym-
metry. In the suspensions studied, when this symmetry is
broken, a transition occurs from oscillons to the highly
localized propagating solitary waves, observed in highly
dissipative Newtonian fluids. The region of existence of
these localized states is also found to be consistent with
the nonadiabatic pinning mechanism [6] that recent stud-
ies of model systems [4,5] have indicated to be the mecha-
nism governing oscillon localization.
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