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By studying recurrence time statistics for chaotic systems, we identify two different types of
recurrences and develop scaling laws relating the mean recurrence time to the information dimension of
the chaotic attractor. We then design two novel and simple ways of using the recurrence time statistics
for analyzing transient as well as nonstationary time series. We show that the methods are capable
of detecting nonstationarity due to drift of parameters, locating bifurcations, telling the periodicity of
major transient periodic motions, and other types of changes in the dynamics.

PACS numbers: 05.45.Tp, 02.50.Fz
Since the time of Boltzmann and Poincare, the study of
the recurrence of states of a dynamical system (i.e., how
often a small region in phase space is visited) has been
recognized to be fundamental to classical statistical me-
chanics [1]. It is also of central importance in the study of
chaos [2]. However, recurrence time statistics for chaotic
systems has only been considered for 1D discrete maps [3]
and for a model stationary flow [4]. Thus, an important
and challenging question is whether a scaling law relating
the mean recurrence time to the attractor dimensions and/
or Lyapunov exponents can be developed for multivariate
chaotic systems.

Almost all existing linear and nonlinear time series
analysis techniques assume that the time series is station-
ary. However, many time series occurring in geophysics,
physiology, finance, etc., are nonstationary. Sometimes
the changes in the dynamics can be the most interesting
feature of a phenomenon under study. Thus, simple and
efficient methods capable of detecting the nonstationarity
of a time series and studying transient dynamics would be
valuable to researchers from diverse fields. This subject
has attracted much attention recently [5–10]. In this Let-
ter, we first consider the recurrence time statistics for multi-
variate chaotic systems. We shall identify recurrence times
of two different types and derive scaling laws relating the
mean recurrence times of these two types to the informa-
tion dimension of the attractor. We then design two simple
and novel algorithms that use the recurrence time statistics
for analyzing transient as well as nonstationary dynamics.

Given a chaotic dynamical system described either by a
discrete map or by a set of ordinary differential equations
(ODEs), we first iterate the map or integrate the ODEs
(with sampling time t) until the dynamics is free of tran-
sience. We then arbitrarily choose a reference point X0 on
the attractor and consider recurrence to its neighborhood
of radius r: Br �X0� � �X : kX 2 X0k # r�. If the under-
lying dynamics on the chaotic attractor is ergodic, then X0
can be chosen arbitrarily. Next, we consider a trajectory
of length N and denote the subset of the trajectory that
belongs to Br �X0� by S1 � �Xt1 , Xt2 , . . . , Xti , . . .�. These
are the Poincare recurrence points, and the Poincare re-
0031-9007�99�83(16)�3178(4)$15.00
currence times are simply defined as �T1�i� � ti11 2 ti ,
i � 1, 2, . . .�. For later convenience, we call �T1�i�� the
recurrence times of the first type.

Sometimes we may have T1�i� � t (t being 1 for
maps), for some i. This corresponds to both Xti and Xti1t

belonging to S1. For continuous time systems with fixed
(small) t, if the radius r of Br �X0� is not too small, we
can have a sequence such as Xti , Xti1t , . . . , Xti1kt belong-
ing to S1, with k on the order of 10 or even larger. This
is schematically shown in Fig. 1. We call the sequence
Xti1t , . . . , Xti1kt (excluding Xti ) sojourn points. When k
is on the order of 10, each such sequence of points effec-
tively represents a 1D set. For maps or continuous time
systems with small r , sojourn points are negligible and
form a 0D (empty or almost empty) set. Now we remove
these points from S1 and denote the remaining points of
S1 by S2 � �Xt01 , Xt02 , . . . , Xt0i , . . .�, which defines a time
sequence �T2�i� � t0i11 2 t0i , i � 1, 2, . . .�. We call S2 the
recurrence points of the second type and T2�i� the recur-
rence times of the second type.

We now develop scaling laws for the mean recurrence
times of these two types, T1�r� and T2�r�. Recall that the
pointwise dimension dp is defined [11] by m���Br �X0���� �
rdp , where m���Br �X0���� is the measure associated with
Br �X0�. Since m���Br �X0���� � m�S1�, while m�S1� can be
estimated by how frequently Br �X0� is visited by a

FIG. 1. A schematic showing the recurrence points of the
second type (solid circles) and the sojourn points (open circles)
in Br �X0�.
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trajectory, we thus have m�S1� � N��T 1�r��t�
N and

T1�r� � r2dp . (1)

The quantity T1�r��r2dp typically depends on the refer-
ence point X0. This reflects the fact that some part of
the attractor will be visited more frequently than other
parts. Since dp and the information dimension d1 typi-
cally have a common value [11], we can substitute dp by
d1 in Eq. (1).

Similarly, we have m�S2� � T2�r�21. When the so-
journ points represent a 0D set, m�S2� � m�S1� � rd1 .
When the sojourn points represent a 1D set, m�S2� �
rd121. Hence, for discrete maps and for continuous time
systems with small r ,

T2�r� � r2d1 , (2)

and for continuous time systems with large r ,

T2�r� � r2�d121�. (3)

To verify the above scaling laws, consider the entire
system of the Henon map [12],

x�n 1 1� � 1 1 y�n� 2 1.4x�n�2,

y�n 1 1� � 0.3x�n� . (4)

and the chaotic Lorenz attractor [13],

dx�dt � 210�x 2 y�, dy�dt � 2xz 1 28x 2 y,

dz�dt � xy 2 8z�3 . (5)

The Lorenz system was integrated using a fourth-order
Runge-Kutta method with sampling time t � 0.001. For
each system, we arbitrarily select a point on the attractor
as a reference point X0 and then compute T1�r� and T2�r�
recurring to Br �X0�. Figure 2 shows the variations of
T1�r� (circles) and T2�r� (squares) with r (in logarithmic

FIG. 2. Variations of T 1�r� (denoted by circles) and T 2�r�
(denoted by squares) with r (in logarithmic scale) for (a) the
Henon map and (b) the Lorenz system.
scale) for the two systems. We observe clearly that, for the
Henon map, T1�r� and T2�r� are the same, and they follow
the scaling laws of Eqs. (1) and (2). For the Lorenz sys-
tem, T1�r� and T2�r� are also the same at small r and also
follow the scaling laws of Eqs. (1) and (2). At large r ,
T2�r� follows the scaling law described by Eq. (3).
The slopes estimated from these lines are d1 � 1.24 for
the Henon map, and d1 � 2.03 and d1 2 1 � 1.02 for the
Lorenz system. These values for the information dimen-
sions of these two systems are consistent with the results
of [14]. We note that the validity of Eqs. (1)–(3) was
also tested and verified using the chaotic Rossler system.

Equations (1)–(3) imply that, if a system has a very
large number of degrees of freedom (i.e., d1 is large) and
r is small, the mean recurrence time is prohibitively long.
This is typically true for systems treated in classical statis-
tical mechanics [1]. Even if a system is low dimensional,
we still need to decide how many recurrences are needed
to reliably estimate T1�r� and T2�r� for each r . Were
T1�r� and T2�r� to follow a power law distribution, as
is the case in a 1D chaotic map containing a marginally
stable fixed point [3] or in anomalous diffusion [4], then a
very large number of recurrences are needed to calculate
T1�r� and T2�r�. Hence we need to consider the distribu-
tions for T1�r� and T2�r�. It turns out that the distribution
for T1�r� is difficult to work with, due to the coexistence
of a deterministic part (the sojourn times), and a random
part (the recurrence times of the second type). The distri-
bution for T2�r� is, however, very simple. In order for a
trajectory to return to Br �X0� (with r small) after leaving
it, folding on the attractor has to have occurred at least
once. This means that the information on the exact loca-
tions of the earlier recurrence points of the second type is
no longer helpful in predicting when and where future re-
currences will occur. In other words, when a recurrence
occurs, the system has no memory as to when and where
the last recurrence occurred. This means T2�i� ought to be
longer than the prediction time scale. The latter is given
by 1�lmax, with lmax being the largest positive Lyapunov
exponent. These arguments can be simply expressed by
the following inequality:

T2�r� . 1�lmax . (6)

The memoryless property of T2�i� also suggests that T2�i�
follows an exponential distribution, as Fig. 3 shows for
the Henon map and the Lorenz system. That T2�i� follows
an exponential distribution is quite beneficial to us, as the
standard deviation of an exponentially distributed random
variable equals its mean. Thus, if we estimate T2�r� by
the sample mean of K observations �T2�r��, then the error
bar for T2�r� is T2�r��

p
K .

Next we develop two simple algorithms for the analysis
of transient as well as nonstationary dynamics. From now
on, we shall focus on the analysis of scalar time series so
that the methods developed here can be directly applied
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FIG. 3. Probability density function (pdf) for �T2�r�� for
(a) the Henon map and (b) the Lorenz system. The scale r
is 1023 and 1022 for (a) and (b), respectively.

to the analysis of experimental data. Using a time delay
embedding technique [15], we construct vectors of the
form, Xi � �x�i�, x�i 1 L�, . . . , x���i 1 �m 2 1�L����, with
�x�i�, i � 1, 2, . . .� being a scalar time series, m being the
embedding dimension, and L being the delay time. We
shall analyze the behavior of T2�r� to develop our al-
gorithms. T1�r� also contains useful information about
the changes in the dynamics due to the presence of tran-
sience or nonstationarity. Because the number of sojourn
points depends upon phase velocity, T1�r� is sensitively
dependent on embedding parameters. Analysis and inter-
pretation are therefore more difficult.

The design of our methods is based on the observation
that, due to nonstationarity, successive recurrence times
will, on average, be changing with time. In our first al-
gorithm, we first partition a long time series into (overlap-
ping or nonoverlapping) blocks of data sets of short length.
We then compute T2�r� for each subdata set. For nonsta-
tionary and transient time series, we expect to observe that
T2�r� will be different for different blocks of subdata sets.
In our second algorithm, we compute T2� j� for different
reference points from the whole data set, where j denotes
jth return to the reference point. Nonstationarity is re-
flected through the variation of T2� j� with j. We shall
detail these methods by studying the transient logistic map
[6] and the generalized Baker’s map [10].

We employ our first algorithm to study the transient dy-
namics of the logistic map: xn11 � axn�1 2 xn�. Follow-
ing Trulla et al. [6], we first generate a transient time series
consisting of 120 001 points, x, by consistently increment-
ing parameter a in steps of 0.00001 on each iteration. We
then compute T2�r� on time series data within episodic
windows consisting of 800 consecutive points. Sequen-
tial windows are shifted by 10 points (thus overlapping by
790 points), giving a total of 11 920 values for T2�r�. We
also follow Trulla et al. [6] by choosing m � 2 and L � 1.
Figure 4 shows the variation of T2�r� with the parameter
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a. The scale r is chosen to be 225. We have observed
that, as long as r is not too large, the T2�r� vs a curve
does not change much with r . We observe from Fig. 4
that the behavior of T2�r� with a not only correctly locates
the bifurcations but also correctly indicates the periodicity
of the major transient periodic motions, such as periods 2
and 4 in the main period-doubling cascade, and period 3
in the period(3)-doubling cascade. This is as expected,
since T2�r� simply estimates the periodicity for periodic
motions. We also observe that there are four large dips
(in addition to the bifurcations) in the T2�r� vs a curve,
which are right above the letters A, B, C, and D. These
dips correspond to the small dips in the Lyapunov expo-
nent vs the bifurcation parameter curve computed by Trulla
et al. [6] using the transient time series. The small dips in
that curve of [6] become larger when the Lyapunov ex-
ponent is computed in a finer resolution [16]. This indi-
cates that T2�r� can also effectively pick up changes of the
dynamics inside the chaotic windows. Finally, we note
that T2�r� in general increases with the parameter a. In
fact, its shape is very similar to that of the spectrum of the
Lyapunov exponent [6,16]. This reflects the variation of
the Lyapunov exponent with a.

Next, we follow Schreiber [10] and study the general-
ized Baker’s map:

if yn # a: un11 � bun, yn11 � yn�a ,

if yn . a: un11 � 0.5 1 bun,

yn11 � �yn 2 a���1 2 a� .

A time series of length N � 40 000 is generated from
the map, with nonstationarity introduced through the
dependence of b (� n�N) with time step n. The
dynamics of this system is not as rich as that described
by the transient logistic map. However, since the largest
Lyapunov exponent of this system does not vary with b,

FIG. 4. Variation of T2�r� with the parameter a. Thin
dashed-dotted vertical lines are drawn to indicate bifurcations.
Capital letters A, B, C, and D are used to indicate the four dips
right above them.
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FIG. 5. Variation of T 2� j� with j. The scale r used to
generate the figure is 225. 9000 points are used in the
calculation.

this system is somewhat more challenging to a method
that aims to detect nonstationarity in a time series. Below,
we shall illustrate our second algorithm with this system.
Note, however, that the nonstationarity in this system can
also be easily detected using our first algorithm.

Following Schreiber [10], we first choose the embed-
ding dimension m � 2 and the delay time L � 1. We then
compute successive recurrence times to Br �X0�, T2� j�
���Br �X0����, where j is used to indicate the jth recurrence to
Br �X0�. To eliminate the dependency of T2� j� on X0,
we normalize �T2� j� ���Br �X0����, j � 1, 2, . . .� by its mean,
T2���Br �X0����. This is done for each reference point X0.
Next we group the normalized T2� j� together according to
j, �T2� j� �Xi�, i � 1, 2, . . .�, and then compute the mean of
each group, T2� j�. For nonstationary time series, T2� j�
will vary with j, while for stationary time series, T2� j�
will have almost a constant value of 1. Figure 5 plots
the variation of T2� j� with j, showing that T2� j� almost
linearly increases with j. Through sensitivity tests, we
find the general trend of this curve does not depend on the
particular scale r one uses, as long as r is not too large.

There is a major difference between our methods and
the methods of [5–9] in detecting the nonstationarity in
a time series. The methods in [5–9] used some statistics
from Poincare recurrence points (sometimes the particular
sequence of sojourn points, which starts from the reference
point, may be recommended to be removed [9,17]). They
may fail to detect the nonstationarity in the following dou-
bly nonstationary process: Successive sojourn times and
successive recurrence times are both increasing, and thus
keep the density of the Poincare recurrence points almost
constant. A simple realization of such a process would be
the following. A person has been traveling between two
cities. He is getting older and slower. Hence his succes-
sive sojourn times and recurrence times are both increas-
ing. Yet, during each round trip, on average, he manages
to stay a comparable amount of time at each city, and the
fraction of time he spends in each city is more or less con-
stant. In contrast, the present method will unambiguously
detect the nonstationarity in such a process.

In summary, we have identified two types of recurrence
times, and have derived scaling laws relating the mean
recurrence times to the information dimension of the
attractor. We have also designed two novel ways of
using the recurrence time statistics to detect changes in
dynamics. These methods may be useful for the analysis
of complex time series arising from diverse disciplines of
science, such as geophysics, physiology, and finance.
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