
VOLUME 83, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 18 OCTOBER 1999

3162
Keyhole Look at Lévy Flights in Subrecoil Laser Cooling
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We propose a method to measure the waiting-time distribution of trapped atoms in subrecoil laser
cooling.

PACS numbers: 32.80.Pj
Lévy flights [1,2] manifest themselves in various phe-
nomena ranging from albatrosses searching for food,
fluctuations in share prices, and to turbulence. Most re-
cently, they have entered the field of quantum optics
through laser cooling [3], the quantum kicked rotor [4],
and the motion of atoms in optical lattices [5]. Impressive
laser experiments [6,7] have demonstrated Lévy flights.
In contrast to the anomalous transport in optical lattices
the stochastic variable obeying the Lévy law in the realm
of subrecoil laser cooling [8] based on velocity selective
coherent population trapping (VSCPT) is of a different
nature. It is the waiting time [3] for particles trapped in
the vicinity of zero momentum. The waiting-time dis-
tribution P�t� ~ t23�2 shows a slowly decreasing power-
law tail [3]. This distribution belongs [2] to the attraction
basin of the Lévy law Lm,1 with m � 1�2. In the present
paper we suggest a simple method to observe directly the
Lévy statistics originating in VSCPT laser cooling.

We consider an additional decay channel and identify
the following features: (i) The extra decay acts like a
velocity filter, (ii) the counting rate in the decay channel
describes asymptotically the waiting-time distribution for
the trapping state, and (iii) this distribution satisfies the
same Lévy statistics L1�2,1 as the closed three-level system
[3]. Hence the decay channel is the keyhole which allows
us to see Lévy flights.

The standard scheme of 1D subrecoil laser cooling
[8] relies on the interaction of a three-level L atom
with two counterpropagating light beams. For the sake
of simplicity we assume that they have equal intensities
and are resonant with the atomic transitions between the
two sublevels jg1� and jg2� of the ground state and the
excited state je0�. The latter decays to the ground state
with the rate g.

Our ultimate goal is to measure the waiting-time
distribution for trapped particles. For this purpose we
consider an open L system [9] where the excited state
has an additional decay channel [10] to a nondetected
level jnd� with the rate g0 ø g. Hence the total width
of the excited state is G � g 1 g0. We do not address
the physical mechanism responsible for the decay channel
to the outside of the L system. We need a keyhole but its
details do not matter.

The behavior of the system follows from the quantum
equations for the atomic density matrix taking into ac-
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count the recoil effect due to induced and spontaneous
transitions [11]. For a detailed derivation of these equa-
tions for the closed L system we refer to Ref. [12].

It is convenient to use the state basis j1� � jg2, p 2

h̄k�, j2� � jg1, p 1 h̄k�, and j3� � je0, p� with atomic
momenta p 6 h̄k and p along the laser beams. These
states form a closed family with respect to induced
transitions in the external field. Spontaneous transitions
into the ground states lead due to the random recoil along
the laser beams to an incoherent mixing of the families
within the range of momenta jpj # h̄k. For the sake
of simplicity we assume the spontaneous emission to be
isotropic. The pumping rate

Gg�p, t� �
g

4

Z 1

21
dx r33�p 1 h̄kx, t� (1)

of the ground state sublevel with the momentum p is
proportional to the partial width g of the upper level
with the population r33. In contrast, the damping of the
matrix elements r33, r31, and r32 is determined by the
total width G. This is the only difference in comparison
with the closed L system [13–15].

Throughout the paper we consider the weak saturation
regime, when the saturation parameter g � dE��h̄G�
with the dipole moment d and the electric field E is
small; that is g ø 1. This allows us, provided t ¿ 1�G,
to eliminate the excited state and to obtain the closed
set of equations for the ground state density matrix
elements n�p, t� � r11�p, t� 1 r22�p, t�, m�p, t� �
r21�p, t� 1 r12�p, t� and in�p, t� � r21�p, t� 2

r12�p, t�. These equations read

≠

≠t
n�p, t� � Gg2

∑
2F�p, t�

1
g

2G

Z 1

21
dx F�p 1 2h̄kx, t�

∏
(2)

with

≠m

≠t
1 Gg2 F 2

2kp
m

n � 0 , (3)

and

≠n

≠t
1 Gg2G 1

2kp
m

m � 0 , (4)
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where we have introduced the notation

n 1 m 1 in

1 1 i
2kp
mG

� F 1 iG . (5)

We note that 1
2 �n 1 m� � nC and 1

2 �n 2 m� � nNC
are the populations of the coupled state jcC� � �j1� 1

j2���
p

2 and noncoupled state jcNC� � �j1� 2 j2���
p

2,
respectively, and m � nC 2 nNC is the population
difference.

In the following analysis we eliminate the variables m

and n and derive a relation connecting the functions n
and F. For this we focus on the time regime t � t �
1��g0g2� ¿ 1��Gg2�. These conditions guarantee that
(i) the relaxation processes inside the L system are much
faster than the decay process to the outside of the system,
and (ii) enough spontaneous transitions into the ground
state occur to redistribute the atoms in momentum space.
Under these conditions pumping into the trapping state
takes place before the L system decays to the level jnd�.

For atoms with momenta p � mg�k the loss rate to
the outside of the L configuration is of the order of g0 g2.
However, in the vicinity of p � 0 the loss rate is much
smaller and proportional to p2g0g2 [3,12]. It vanishes for
the dark state jcNC�p � 0��, because the level je0, p �
0� is not populated at all and no spontaneous transitions
to the level jnd� can occur. Therefore, the decay channel
shows velocity selectivity and acts like a velocity filter.
On the time scale t $ t, the decay channel influences of
course the kinetics, but it does not change the stochastic
properties of the waiting time for trapped particles as we
show below.

Moreover, we now consider Eqs. (2)–(5) in a regime
where the Doppler shift does not play an essential
role. This is the domain t ø g��gvR�2 where vR �
h̄k2��2m� denotes the recoil frequency. Indeed we recall
from Eq. (2) that the characteristic momentum scale
dpdif�t� for the function F�p, t� is given by the usual
diffusion relation [12,16] dpdif�t� � h̄k

p
gg2t. This

provides [3,14,17] the estimate 2kp��mG� ø 1 which
allows us to neglect this term related to the Doppler shift
in Eq. (5). We therefore find the relations

F � n 1 m and G � n . (6)

With the result G � n, Eq. (4) readsµ
≠

≠t
1 Gg2

∂
n 1

2kp
m

m � 0 . (7)

Since t ¿ 1�Gg2 we can neglect in Eq. (7) the time
derivative which yields n � �22kp��mGg2�	 m and
hence Eq. (3) for m takes the form

≠m

≠t
1

µ
2kp
m

∂2 1
Gg2 m � 2Gg2F . (8)

We assume the natural initial condition m�t � 0� � 0,
that is no coherence between the two ground states at
t � 0. The solution of the inhomogeneous differential
equation (8) of first order then reads

m�p, t� � 2Gg2
Z t

0
dt0 K�p, t 2 t0�F�p, t0�

where we have introduced the kernel

K�p, t� � exp

∑
2

µ
2kp
m

∂2 t
Gg2

∏
. (9)

With the help of Eq. (6), that is n � F 2 m, we find

n�p, t� � F�p, t� 1 Gg2
Z t

0
dt0 K�p, t 2 t0� F�p, t0� .

(10)

Equation (10) is the central point of our paper. It shows
that the distribution function n is related to the function F
in a local and a nonlocal way in time [18]. In the latter
there appears the kernel K whose width dp in momentum

dp�t� �
m
2k

s
Gg2

t
�

h̄k
4vR

s
Gg2

t

decreases in time as t21�2. When we compare this width
to the width dpdif�t� of the function F we find the relation
dp�t� � dpdif�t���vRt�. Therefore, in the time domain
tvR ¿ 1 the width dp of the kernel is much smaller than
the width dpdif of the function F [19], which allows us to
approximate the kernel by a scaled d function

K�p, t� �
h̄k

4vR

s
pGg2

t
d�p� . (11)

Thus the first term in Eq. (10) with the characteristic
momentum scale dpdif is the distribution function ndif �
F for the particles subjected to the diffusion process.
The term nonlocal in time and of the form d�p� Ntr �t�
describes the particles trapped in the vicinity of zero
momentum. This decomposition is based on the fact that
outside the trapping area the noncoupled and coupled
states are populated almost equally; that is nNC � nC.
Here we therefore have the relations 2m � nNC 2 nC �
0 and F � n 1 m � 2nC � n. In contrast, inside the
trapping area the population of the noncoupled state is
much larger than its counterpart; that is nNC ¿ nC, and
2m � nNC � n.

With Eq. (11) we can bring Eq. (10) into the form

n�p, t� � ndif�p, t� 1 d�p� Ntr �t� , (12)

where the total number Ntr �t� of trapped particles is the
convolution [20]

Ntr �t� � Gg2
Z t

0
dt0

h̄k
4vR

s
pGg2

t 2 t0
ndif�0, t0� . (13)

We now interpret this expression for Ntr in terms of
the statistical approach [3] which treats subrecoil laser
cooling as continuous random walks with a trapping
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process around p � 0. Since in the vicinity of zero
momentum m � 2nNC we find from Eq. (8) that

tNC�p� � Gg2

µ
m

2kp

∂2

(14)

is the momentum dependent lifetime [3,12] of the non-
coupled state. Hence the kernel K�p, t� �
exp�2t�tNC�p�	 gives the decay law of the non-
coupled state with momentum p. Integration of K over
p therefore yields the probability w�t� for the atom to
remain in the trapping state until the time t, provided it
was prepared in this state at t � 0. The random walk
theory [2] refers to this quantity as the waiting function.
With the explicit relation (9) for the kernel we find

w�t� �
1
Z

Z
dp K�p, t� �

1
Z

h̄k
4vR

s
pGg2

t
. (15)

Since w has to be dimensionless we have introduced the
size [3] Z �

R
jpj#ptrap

dp � 2ptrap of the trapping state
in momentum space [21].

Equation (15) shows that the waiting function w�t� ~

t21�2 of the open L system enjoys the same asymptotic
time dependence [3] as in the closed L system. The
reason becomes clear when we recall that the time
dependence of w�t�, Eq. (15), follows immediately from
the p22 dependence of the lifetime, Eq. (14), resulting
from the coupling between jcNC� and jcC� states due to
the kinetic energy operator [12].

With the identification given by Eq. (15) we rewrite the
convolution Eq. (13) as

Ntr �t� �
Z t

0
w�t 2 t0� F�t0� dt0 (16)

where

F�t� � ZGg2ndif�0, t� � 2
Z
jpj#ptrap

dp Gg�p, t� . (17)

In the last step we have used Eq. (1) together with G � g

and realized that r33 � g2ndif is almost constant around
p � 0.

According to Eq. (17), F�t� is the pumping rate into
momenta around p � 0, that is into the trapping state.
We see that an atom reaches this state due to a random
event such as spontaneous emission from the upper
level and thereby undergoes a recoil from the interval
2h̄k # p # h̄k. This allows us to interpret F�t�dt
as the probability that between t and t 1 dt the atom
has reached due to the diffusion the trapping state.
Therefore the identifications, given by Eqs. (15) and (17),
result in the standard stochastic interpretation [2] of the
convolution (16) for the trapping state probability.

We now prove that for large times, that is for t ¿
t, the counting rate Gnd into the nondetected state is
given by the waiting-time distribution P�t� � 2≠w�≠t �
t23�2. The counting rate Gnd � 2≠N�≠t follows from
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the change of the total number N of particles in the ground
states jg6�. We derive the equation of motion for N�t� by
integrating Eq. (2) over p and using the decomposition
Eq. (12) which yields

≠N
≠t

� 2
N 2 Ntr

t
. (18)

Hence the total number of particles is not conserved.
This is a consequence of the coefficient g�G , 1 in
Eq. (2). Moreover, due to the term Ntr�t, N�t� displays
a nonexponential decay.

In the asymptotic regime t ¿ t we can neglect the
time derivative in Eq. (18) and arrive at the relations

N�t� 
 Ntr�t�, that is Ndif � 0 . (19)

In this approximation the number Ndif of diffused par-
ticles is zero and the distribution function ndif�p, t� tends
to zero as well. Since F�t� is proportional to ndif�0, t�
and ndif tends to zero for t . t only times t0 # t

contribute to the integral Eq. (16). Moreover, when we
recognize that w�t� � t21�2 is a slowly varying function
we can approximate w�t 2 t0� 
 w�t�, factor it out of
the integral, and extend the upper limit of integration to
infinity. Hence for t ¿ t the number of trapped particles
reads

Ntr �t� 
 w�t�
Z `

0
dt0 F�t0� (20)

and is therefore asymptotically proportional to the waiting
function w�t�. The convergence [22] of the integral in
Eq. (20) is due to the keyhole, that is because of g0 fi 0.

With the help of Eqs. (19) and (20) the counting rate

Gnd�t� � 2
≠Ntr

≠t
� 2

≠w
≠t

� P�t� � t23�2 (21)

in the decay channel describes asymptotically the waiting-
time distribution P�t� for the trapped particles.

The relation (12) has a very simple meaning: When
t ¿ t the particles which are not in the trapping state
have populated the nondetected level. Therefore the
rate of spontaneous fluorescence in the decay channel is
proportional to the probability P�t� that the atom leaves
the trapping state per unit time. In other words the
slowly decreasing power-law tail in the rate of resonance
fluorescence into the nondetected state gives a direct
evidence of the Lévy statistics in subrecoil laser cooling.

We can also observe these Lévy statistics by monitor-
ing the fluorescence rate Gg�t� � 2

R
dp Gg�p, t� on the

transition je� ! jg�. We find from Eq. (1) that Gg�t� �
gNe�t� is given by the total number Ne�t� of atoms in
the excited state. Since Ne�t� ~ g2Ndif�t� ~ 2≠N�≠t it
shows the same asymptotic time dependence as Gnd�t�,
Eq. (21); that is Gg�t� ~ P�t�. We emphasize that this is
due to the keyhole; without the decay channel Gg�t� would
be a more complicated function on time.
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For an experimental realization we envision a rather
monochromatic beam of slow atoms with velocities
y & 103 cm�s. We observe the dependence of the
fluorescence intensity into the level jnd� along the atomic
trajectory inside the laser field. The typical signal
strength is g0�g of the resonance fluorescence rate on the
transition je� ! jg�. The fact that the time and the space
dependence of the angular distribution Ind� �n, t� of emitted
photons factorizes provides some advantages in monitor-
ing the signal. Indeed, the angular distribution Ig� �n, t�
of the fluorescence signal on the transition je� ! jg� is
determined by the induced dipole moment and does not
factorize. It shows a more complicated time dependence
[23] than Gnd�t�.

In conclusion, we have shown that the waiting-time
distribution for the trapped particles in VSCPT governs
asymptotically the rate of resonance fluorescence in the
decay channel of an open L system. The decay constant
g0 into this channel has to be large enough, g0 ¿

v
2
R�g, but smaller than g. Therefore for an experimental

realization of the proposed method we need an appropriate
level structure. In metastable He the spontaneous decay
rate of the upper level to the ground state is negligibly
small. However, it may be possible to excite or to ionize
selectively the upper level by an additional laser field
and monitor the signal in this decay channel. The much
richer level structure of Rb atoms which were subjected
successfully [24] to subrecoil cooling might even be more
suitable for our proposal.

Our results rely on integral characteristics such as the
total number of particles and the fluorescence rate of
the system. Moreover, the underlying physical picture
is rather simple. We are therefore confident that this
technique can be extended to higher dimensions.
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