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Chiral Fluid Dynamics and Collapse of Vacuum Bubbles
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We study the expansion dynamics of a quark-antiquark plasma droplet from an initial state with
restored chiral symmetry. The calculations are made within the linear s model scaled with an
additional scalar field representing the gluon condensate. We solve numerically the classical equations
of motion for the meson fields coupled to the fluid-dynamical equations for the plasma. Strong space-
time oscillations of the meson fields are observed in the course of the chiral transition. A new
phenomenon, the formation and collapse of vacuum bubbles, is predicted. The particle production
due to the bremsstrahlung of the meson fields is estimated.

PACS numbers: 25.75.Dw, 11.30.Rd, 12.38.Mh, 24.85.+p
It is commonly believed that the conditions for chiral
symmetry restoration and color deconfinement can be
reached in the course of an ultrarelativistic heavy-ion col-
lision. The quark-gluon plasma (QGP) is expected to be
formed at some intermediate stage of the reaction. Since
strong collective expansion may develop already in the
QGP, its subsequent transition to the hadronic phase should
be treated dynamically [1]. At present this is possible only
on the basis of effective models obeying the symmetry
properties of QCD.

Our considerations below are based on the linear s

model which respects approximate chiral symmetry. In ad-
dition to the usual chiral fields, s and p � �p1, p2, p3�,
the model includes the dilaton or glueball field, x , to
simulate the trace anomaly of QCD [2]. The s and x

represent the quark and gluon condensates as effective
meson fields. Models of this kind were used earlier for
nuclear matter (see, e.g., [3]).

The dynamical model.—The effective chiral Lagrang-
ian for constituent quarks interacting with the background
meson fields is written as
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Here U is the usual Mexican Hat potential scaled by the
glueball field x (below we take n � 3), and W is the effec-
tive potential responsible for the scale invariance breaking.
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The trace of the energy-momentum tensor for the above
Lagrangian, T

m
m � 2l

2
2x4, is assumed to be proportional

to the gluon condensate, �G2
mn�. The scale parameter L is

of the order of LQCD 	 200 MeV.
This Lagrangian leads to the normal vacuum state,

where chiral symmetry is spontaneously broken: s � fp �
93 MeV, p � 0, and x � x0 � 136 MeV. The parame-
ters of the Lagrangian are chosen so that in the normal vac-
uum the constituent quark mass mq � gfp � 313 MeV,
the s-meson mass m2

s � 2l
2
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p 	 �0.6 GeV�2, and
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The energy density associated with breaking the gluon
condensate B � l

2
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4
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4 is fixed to 0.5 GeV
fm3 [4]. In

the case of thermal equilibrium and a frozen x field, x �
x0, the model leads to a chiral transition at temperatures
around 130 MeV [5].

The form of the effective glueball potential Eq. (1) is
motivated also by the instanton liquid model (see the
recent review [6]) if x4 is identified with the instanton
density. As predicted by this model, the instanton density
is significantly suppressed at high temperatures. In our
calculations the coupling of the gluon condensate to the
thermal bath is parametrized in a simple form J�x�x2�x�
[the last term in Eq. (2)], where J�x� � AT2�x� and T �x�
is the local temperature. The coupling strength A 	 2.4
is chosen so that the gluon condensate, x4, is reduced by
about 60% at T � 280 MeV.

The model presented above is not fully consistent
since it does not include explicitly the thermal gluon ex-
citations. In doing so we were motivated by the recent
analysis [7] of lattice data demonstrating that at tem-
peratures of interest here the gluons have a rather large
effective mass of about 0.6–0.8 GeV. Therefore, the con-
tribution of thermal gluons to all thermodynamical quan-
tities is significantly suppressed by the Boltzmann factor.
On the other hand, their contribution is included implic-
itly in the coupling term Jx2 determining the degree of
reduction of the gluon condensate at high temperatures.

Below we adopt the mean field approximation consid-
ering s, p , and x as classical fields. The equations of
© 1999 The American Physical Society
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motion for these fields are obtained by applying the varia-
tional principle to the above Lagrangian. The source terms
in these equations are determined by the distribution of
quarks and antiquarks, which in principle should be found
by solving the Dirac equation. Because of the interaction
with meson fields, quarks acquire an effective mass [8]

mq�x� � g
q

s2�x� 1 p2�x� , (3)

which, in general, is space and time dependent. This
makes an exact solution of the Dirac equation very dif-
ficult. To avoid this problem one should make further
approximations. A reasonable starting point is the Vlasov-
type kinetic equation for the scalar part of the quark-
antiquark Wigner function f�x, p�,∑
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where Icoll is the collision term. In Refs. [8–10] the colli-
sionless �Icoll � 0� approximation was used for the propa-
gation of quarks in background meson fields. Obviously
this approximation can be justified only for the late stages
of the expansion.

Here we consider another approximation which is more
appropriate to high temperatures. Namely, we assume that
the partonic collisions are frequent enough to maintain
local thermodynamical equilibrium. In this case f�x, p�
can be represented in terms of the equilibrium distribution
functions characterized by local temperature T �x� and
chemical potential m�x�.

By multiplying both sides of Eq. (4) with pm, project-
ing on the mass shell, pmpm � m2�x�, and integrating
over 4-momenta one arrives at the equations of relativistic
hydrodynamics [11] (see also [12])
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mq�x� � 0 , (5)

where Tmn�x� is the energy-momentum tensor, Tmn �
�E 1 P�umun 2 Pgmn , and un�x� is the collective
4-velocity of the quark-antiquark fluid. Here the energy
density E, pressure P, and scalar density rs are functions
of T �x�, m�x�, and mq�x�. They can be expressed in
the standard way through the Fermi-Dirac occupation
numbers. We solve these equations consistently with the
equations of motion for the meson fields which determine
the quark effective mass through Eq. (3). This is why we
call this approach chiral fluid dynamics.

The evolution of the glueball field is driven by the cou-
plings to the chiral fields and to the thermal bath. The
corresponding source J�x� drops with the characteristic
hydrodynamical time of order of a few fm
c. Because of
some uncertainties in the glueball Lagrangian, particularly,
in the derivative terms, below we consider two options of
the model, i.e., full dynamics as described above and pure
chiral dynamics with a frozen glueball field �x � x0�.

Numerical results.—For numerical simulations we have
used the RHLLE algorithm described and tested in [13] for
fluid dynamics and the staggered leapfrog method for the
field equations. Below we present results for the real-time
evolution of spherical droplets of radii R � 2 and R �
4 fm. In the initial state we take a baryon-free �m � 0�
fluid with a Woods-Saxon temperature profile and a linear
profile of the collective momentum density. Initially the
system is assumed to be in the chiral-symmetric phase
at temperature T 	 280 MeV. The initial conditions for
the fields are chosen uniformly within the droplet and
smoothly interpolated to their vacuum values outside the
droplet. We assume that s and x fields are initially close
to their equilibrium values at this high temperature.

The results of the calculations for R � 4 fm are pre-
sented in Figs. 1 and 2. It is seen that within a few
fm
c the energy density of the fluid drops from the initial
value of about 5.0 GeV
fm3 to below 0.1 GeV
fm3. A

FIG. 1. Contour plots in the r-t plane (case I) of the energy
density in GeV
fm3 [(top) from left the subsequent decreasing
levels are 5.0, 4.55, 4.05, 3.55, 3.05, 1.55, 2.05, 2.55, 1.05,
0.55, 0.35, 0.15, and 0.05 GeV
fm3] and temperatures in MeV
[(bottom) from left the subsequent decreasing levels are 280,
260, 240, 220, 200, 180, 160, 140, 120, 100, 80, 60, and
40 MeV] in the expanding spherical quark-antiquark droplet of
initial radius R � 4 fm. The initial collective velocity is about
0.2c at the surface.
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FIG. 2. The evolution of pion, sigma, and glueball fields
in the t-r plane for an expanding droplet of initial radius
R � 4 fm. The initial values (case I) of the fields are
s � 20.05fp , �s � 0, p3 � 0.2fp , �p3 � 0, x � 0.79x0,
and �x � 0.

shell-like structure of the matter distribution is clearly
seen later [14,15]. The fluid is cooled down to T �
130 MeV already at t 	 5 fm
c. As Fig. 2 shows, at
this time the s field changes rapidly from its initial value,
s 	 0, towards the new asymptotic value, s � fp . This
transition is accompanied by strong nonlinear oscillations
of the all coupled fields.

The pion field oscillations are especially strong and
spread over the whole space within the light cone. In ac-
3136
cordance with previous studies [16–20], our calculations
show that soft pion modes are indeed strongly amplified
(by a factor of 10) in the course of the chiral transition even
in a finite expanding droplet. As suggested earlier (see,
e.g., [21–23]), a perfect isospin alignment of the classical
pion field should lead to a nonstatistical distribution of the
ratio of neutral to charged pions. One should however bear
in mind that these coherent pions will be accompanied by a
large number of genuine pions (in the considered example,
about 1000) produced at the hadronization of plasma.

It is interesting to note that the heavy s and x fields
have quite different dynamics compared to the pion field.
Initially they evolve almost adiabatically following the in-
stantaneous temperature. Instead of expanding they first
shrink and then rebound at about the time of the chiral
transition, when strong oscillations start. One can under-
stand this behavior from the following consideration. The
regions where s and x significantly deviate from their
vacuum values, fp and x0, have an extra energy density
DEvac � B, compared to the normal vacuum. This vac-
uum energy excess generates a negative pressure, Pvac �
2DEvac. Such regions can survive only until the inter-
nal pressure of matter (in our case, quark-antiquark fluid),
Pmat, is large enough to counterbalance the external vac-
uum pressure, i.e., when Pmat 1 Pvac $ 0. This condition
is always fulfilled in an equilibrated system. However,
in the course of a rapid expansion the opposite condition,
Pmat 1 Pvac , 0, can eventually be reached in a certain
region of space which we call a vacuum bubble. Then the
outside vacuum propagates into this bubble trying to mini-
mize its size. This process looks like a collapse of an air
bubble in a liquid. In our case the role of a liquid is played
by the vacuum quark and gluon condensates.

The collapse starts from the surface of the quark-
antiquark droplet. As the energy density of the fluid de-
creases the speed of the ingoing wave increases. Finally
the true vacuum penetrates to the center. Because of the
inertial forces the condensates overshoot their equilibrium
vacuum values. This is why very strong oscillations are
developed at the center of the bubble. This violent dynam-
ics may lead to very interesting phenomena like particle
production by the bremsstrahlung mechanism, reheating
of the fluid, or trapping of some quarks and antiquarks
(especially heavy ones s, s̄, c, c̄) in the bubble. In this
paper we consider only the first process.

Particle production.—In general, a time-dependent me-
son field f�r, t� can be represented asymptotically as an
ensemble of quanta of this field. Using the coherent state
formalism one can write the explicit expression for the
momentum distribution of the mesons produced (see, e.g.,
Refs. [10,16])

2vk
dNf

d3k
�

1
�2p�3 �j �f�k, t�j2 1 v2

kjf�k, t�j2� , (6)

where vk �
q

k2 1 m2
f is the single-particle energy of a
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meson with the vacuum mass mf. In this formula f�k, t�
and �f�k, t� are the three-dimensional Fourier transforms
of the meson field f�r, t� and its time derivative �f�r, t�.
They are obtained from the dynamical simulations de-
scribed above. The right-hand side should be calculated
at sufficiently late times, when nonlinearities in the field
equations are negligible.

The numbers of produced particles depend sensitively
on the initial conditions for the fields, droplet size, and the
expansion dynamics. In Table I we present the particle
numbers (calculated at t � 30 fm
c) for the illustrative
example of Fig. 2, R � 4 fm, with the initial glueball field
0.79x0 (case I) and 0.1x0 (case II), as well as for a smaller
droplet, R � 2 fm. For comparison, the results for the
frozen glueball field, x � x0, are also shown. The inclu-
sion of a dynamical glueball field leads to an increase in the
produced particle number by a factor of 2 or more, mainly
due to the splitting of soft x modes into pion and sigma
modes with momenta of about mx
2. But a larger fraction
of energy, associated with the initially suppressed gluon
condensate, goes into the bremsstrahlung of the x field.
One can see that much more particles, especially glue-
balls, are produced when the system is initially trapped in a
metastable state with x 	 0 (case II). On the other hand,
significantly fewer particles are produced from a smaller
droplet with R � 2 fm.

Conclusions.—It is demonstrated that the chiral tran-
sition in an expanding finite droplet is accompanied by
strong space-time oscillations of the background fields.
The long wavelength modes of the pion field are strongly
amplified, by a factor of 10, in the course of transi-
tion. The gluon condensate brings into play a new scale
of energy density, B � 0.5 GeV
fm3, which significantly
changes the dynamics.

The simulations reveal a novel phenomenon, the forma-
tion and collapse of the vacuum bubbles, associated with
the regions of out-of-equilibrium quark and gluon con-
densates and low matter pressure. The additional energy
released in the collapse goes partly into the coherent pi-
ons, but to a larger extent, to the production of s mesons
and glueballs. Because of a very large width of the s me-
son its direct observation in heavy ion collisions is practi-
cally impossible. But the glueballs can be detected by the

TABLE I. The numbers of neutral pions �Np0 �, s mesons
�Ns�, and glueballs �NG� produced by the bremsstrahlung
mechanism in the course of a quark-antiquark droplet expan-
sion. Results are presented for initial droplet radii 2 and 4 fm,
as well as for full (cases I and II) and frozen x dynamics.

R x dynamics Np0 Ns NG

2 fm Frozen 0.4 0.4 0
Full (I) 0.4 0.7 0.5
Full (II) 3 2 0.7

4 fm Frozen 5 2 0
Full (I) 4 6 3
Full (II) 13 10 17
characteristic decay channels G ! pp , K̄K with widths
of about 100 MeV, as well as by the electromagnetic de-
cay �G ! gg� with a width of a few keV.

In the future we are planning to improve the model in
two directions. First, a more realistic treatment of the
gluon condensate and its coupling to the partonic plasma
should be introduced. Second, friction terms due to the
interaction of meson fields with the thermal bath should
be included.
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