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We present a general strategy to solve the notorious fermion sign problem using cluster algorithms.
The method applies to various systems in the Hubbard model family as well as to relativistic fermions.
Here it is illustrated for nonrelativistic lattice fermions. A configuration of fermion world lines is
decomposed into clusters that contribute independently to the fermion permutation sign. A cluster
whose flip changes the sign is referred to as a meron. Configurations containing meron clusters
contribute 0 to the path integral, while all other configurations contribute 1. The cluster representation
describes the partition function as a gas of clusters in the zero-meron sector.

PACS numbers: 05.50.+q, 02.70.Lq, 12.38.Gc, 71.10.Fd
The numerical simulation of fermions is a notorious
problem that hinders progress in understanding high-
temperature superconductivity [1], QCD at nonzero
chemical potential [2], and many other important prob-
lems in physics. One of the main problems originates
from the minus signs associated with Fermi statistics
which prevent us from interpreting the Boltzmann factor
in a fermionic path integral as a positive probability.
When the sign of the Boltzmann factor is incorporated in
measured observables, the fluctuations in the sign give rise
to dramatic cancellations. Especially for large systems at
low temperatures this leads to relative statistical errors that
are exponentially large in both the volume and the inverse
temperature. This makes it impossible in practice to study
such systems with standard numerical methods. Here,
for the first time, we completely eliminate a severe sign
problem in the simulation of a nonrelativistic system of
interacting lattice fermions using a cluster algorithm. The
solution of the problem proceeds in two steps. The idea
of the first step is to use cluster algorithm techniques to
reduce the problem of canceling many contributions 61 to
the problem of averaging over non-negative contributions
0 and 1. This step solves one-half of the sign problem
as discussed below. In large volumes and at small
temperatures one still generates vanishing contributions
to the average sign most of the time and very rarely one
encounters a contribution 1. In order to solve the other
half of the problem a second step is necessary which
guarantees that contributions 0 and 1 are generated with
similar probabilities. The idea behind the second step is
to include a Metropolis decision in the process of cluster
decomposition. The two basic ideas behind our algorithm
are general and apply to a variety of systems. In this
paper, we illustrate our method for a simple model which
serves as a testing ground for the new ideas.

Let us consider a fermionic path integral
Zf �

P
n Sign�n� exp�2S�n�� over configurations

n with a Boltzmann weight of Sign�n� � 61 and
magnitude exp�2S�n��. Here S�n� is the action of a cor-
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responding bosonic model with partition function Zb �P
n exp�2S�n��. A fermionic observable O�n� is ob-

tained in a simulation of the bosonic ensemble as

�O�f �
1

Zf

X
n

O�n� Sign�n� exp�2S�n�� �
�O Sign�
�Sign�

.

(1)

The average sign in the simulated bosonic ensemble is

�Sign� �
Zf

Zb
� exp�2bVDf� . (2)

The last equality (valid for large bV ) points to the heart
of the sign problem. The expectation value of the sign
is exponentially small in both the volume V and the
inverse temperature b because the difference between
the free energy densities Df � ff 2 fb of the fermionic
and bosonic systems is necessarily positive. Even in an
ideal simulation of the bosonic ensemble which generates
N completely uncorrelated configurations, the relative
statistical error of the sign (again for large bV ) is

DSign
�Sign�

�

p
�Sign2� 2 �Sign�2

p
N �Sign�

�
exp�bVDf�

p
N

. (3)

Here we have used Sign2 � 1. To determine the average
sign with sufficient accuracy one needs to generate on
the order of N � exp�2bVDf� configurations. For large
volumes and small temperatures this is impossible in
practice.

It is possible to solve one-half of the problem if one can
match all contributions 21 with 1 to give 0, such that only
a few unmatched contributions 1 remain. Then effectively
Sign � 0, 1 and hence Sign2 � Sign. This reduces the
relative error to

DSign
�Sign�

�

p
�Sign� 2 �Sign�2
p

N 0 �Sign�
�

exp�bVDf�2�
p

N 0
. (4)

One gains an exponential factor in statistics, but one still
needs to generate N 0 �

p
N � exp�bVDf� independent
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configurations in order to accurately determine the average
sign [3]. This is because one generates exponentially
many vanishing contributions before one encounters a
contribution 1.

In several cases cluster algorithms provide an explicit
matching of contributions 21 and 1 using an improved
estimator. Cluster algorithms are a very efficient tool
to simulate quantum spin systems [4–6]. In particular,
the method can be implemented directly in the Euclidean
time continuum [7]. The basic idea behind these algo-
rithms is to decompose a configuration into NC clusters
of spins which can be flipped independently. Averaging
analytically over the 2NC configurations generated by the
cluster flips, one can construct improved estimators for
various physical quantities. As we will show, using an
improved estimator for the fermion sign, cluster algorithms
can solve the sign problem if the clusters contribute inde-
pendently to the sign and a reference cluster orientation
with a positive weight always exists. This means that the
flip of any given cluster either changes the sign or not, in-
dependent of the orientation of all the other clusters. A
cluster algorithm for lattice fermions was first presented in
[8] with the hope of finding such an improved estimator.
Unfortunately, in that algorithm the clusters do not affect
the sign independent of one another. Still, cluster algo-
rithms have been used for fermion models [9]. For sys-
tems with no severe sign problem these algorithms work
much better than standard numerical methods, but they do
not solve the fermion sign problem.

A solution to a sign problem using cluster algorithms
was first found in a bosonic model with a complex ac-
tion—the 2D O�3� model at vacuum angle u � p [10].
The cluster independence was achieved by constructing
a nonstandard action. In that model clusters whose flip
changes the sign are half-instantons which are usually re-
ferred to as merons. In this paper we extend the meron
concept to fermionic models by demanding cluster in-
dependence. For nonrelativistic spinless fermions hop-
ping on a d-dimensional cubic lattice of size V � Ld

with periodic boundary conditions, this leads us to the
Hamiltonian [11]

H �
X
x,i

∑
2

t
2

�c1
x cx1î 1 c1

x1îcx�

1 U

µ
nx 2

1
2

∂ µ
nx1î 2

1
2

∂∏
, (5)

with U $ t . 0. Here î is a unit vector in the i
direction, c1

x and cx are fermion creation and annihilation
operators obeying the standard anticommutation relations,
and nx � c1

x cx is the occupation number of the lattice
site x. Since U . 0, two fermions or two holes on
neighboring lattice sites repel each other, while a fermion
and a hole attract one another. This is a simple example
of a fermionic model for which the sign problem can be
solved completely using a meron-cluster algorithm.
Let us now discuss our model and algorithm in
more detail. Following [8] we introduce a space-time
lattice with 2dM time slices and spacing ´ � b�M in
the Euclidean time direction, and we insert complete
sets of occupation number n�x, t� � 0, 1 eigenstates
at each time slice to express the partition function as
a path integral. The magnitude exp�2S�n�� of the
Boltzmann factor is a product of four-site interactions
associated with space-time plaquette configurations
�n�x, t�, n�x 1 î, t�, n�x, t 1 1�, n�x 1 î, t 1 1��. The
sign factor Sign�n� � 61 has a topological meaning.
The occupied sites form fermion world lines which
are closed in Euclidean time. Particles may be ex-
changed during their Euclidean time evolution and the
fermion world lines define a permutation of particles.
According to the Pauli principle, Sign�n� is just the
sign of that permutation. In the following we restrict
ourselves to U � t. Then the bosonic system without
the sign factor is the antiferromagnetic spin 1�2 quantum
Heisenberg model, and n�x, t� � 0 and 1 correspond
to spins 21�2 and 1�2, respectively. The staggered
occupation (the analog of the staggered magnetization)
O�n� � e

P
x,t�21�x11x21...1xd �n�x, t� 2

1
2 �, and the

corresponding susceptibility x � �O2 Sign��bV �Sign�
are important observables.

The algorithm decomposes a configuration into closed
loops of lattice points which may be flipped indepen-
dently. When a loop is flipped, the occupation numbers
of all points on the loop are changed from 0 to 1 and
vice versa. Each lattice point participates in two space-
time plaquette interactions �n�x, t�, n�x 1 î, t�, n�x, t 1

1�, n�x 1 î, t 1 1��. On each interaction plaquette the
lattice points are connected in pairs, and a sequence
of connected points defines a loop cluster. For space-
time plaquette configurations �0, 0, 0, 0� and �1, 1, 1, 1� the
lattice points are connected with their timelike neigh-
bors, for configurations �0, 1, 1, 0� and �1, 0, 0, 1� they
are connected with their spacelike neighbors, and for
configurations �0, 1, 0, 1� and �1, 0, 1, 0� they are con-
nected with their timelike neighbors with probability p �
2��1 1 exp�eU�� and with their spacelike neighbors with
probability 1 2 p. After identifying the clusters, they are
flipped independently with probability 1�2.

A remarkable property of the cluster rules is that
Sign�n� �

QNC

i�1 Sign�Ci�, where Ci , i � 1, . . . , NC

denotes the oriented clusters in a configuration. By
properly flipping the clusters, one can reach a reference
configuration (the first configuration in Fig. 1) in which
all even lattice sites are occupied and all odd sites are
empty. In the reference orientation Sign�Ci� � 1. When
the cluster is flipped, Sign�Ci� � 1 if Nw 1 Nh�2 is
odd and 21 otherwise. Here Nw is the temporal cluster
winding number and Nh is the number of times the cluster
hops to a neighboring lattice point. This relation follows
directly from the fermionic anticommutation relations.
Following [10], we refer to clusters whose flip changes the
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FIG. 1. Two configurations of fermion occupation numbers in
�1 1 1� dimensions. The shaded plaquettes carry the interac-
tion. The dots represent occupied sites. In the second con-
figuration two fermions interchange their positions. Flipping a
meron cluster (represented by the fat line) changes one config-
uration into the other and changes the fermion sign. The other
clusters in the configurations are not shown.

sign as merons. The flip of a meron cluster permutes the
fermions and changes the topology of the fermion world
lines. Since flipping all clusters does not change the
fermion sign, the number of meron clusters is always
even. Two fermion configurations together with a meron
cluster are shown in Fig. 1.

The improved estimator for �Sign� is the average
over the 2NC configurations obtained from independently
flipping the NC clusters in all possible ways. For configu-
rations that contain merons the average sign is zero
because flipping a single meron leads to a cancellation
of signs 61. Only the configurations without merons
contribute to �Sign� and their contribution is always 1.
This solves one-half of the sign problem as discussed
before.

Let us now consider an improved estimator for
�O2 Sign� which is needed to determine the suscepti-
bility x . The staggered occupation, O�n� �

P
C OC ,

is a sum of staggered occupations of the clusters,
OC � e

P
�x,t�[C �21�x11x21...1xd �n�x, t� 2

1
2 �. When a

cluster is flipped, its staggered occupation changes sign.
In a configuration without merons, where Sign�n� � 1 for
all relative cluster flips, the average of O�n�2 Sign�n� over
all 2NC configurations is

P
C jOCj

2. For configurations
with two merons the average is 2jOC1 j jOC2 j where C1 and
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C2 are the two meron clusters. Configurations with more
than two merons do not contribute to �O2 Sign�. Thus,
the improved estimator for the susceptibility is given by

x �
�
P

C jOCj
2dN ,0 1 2jOC1 j jOC2 jdN ,2�

Vb�dN ,0�
, (6)

where N is the number of meron clusters in a configura-
tion. Hence, to determine x one must sample the zero-
and two-meron sectors only.

The probability to find a configuration without merons
is exponentially small in the space-time volume since it is
equal to �Sign�. Thus, although we have increased the sta-
tistics tremendously with the improved estimators, with-
out a second step one would still need an exponentially
large statistics to accurately determine x . One goal of the
second step is to eliminate all configurations with more
than two merons. This enhances both the numerator and
the denominator in Eq. (6) by an exponentially large fac-
tor, but leaves their ratio unchanged. We start with an
initial configuration with zero or two merons. For exam-
ple, a completely occupied configuration has no merons.
We then visit all plaquette interactions one after the other
and choose new cluster connections between the four sites
according to the cluster rules. If the new connection in-
creases the number of merons beyond two, it is not ac-
cepted and the old connection is kept for that plaquette.
To decide if the meron number changes, one needs to ex-
amine the clusters affected by the new connection. Al-
though this requires a computational effort proportional
to the cluster size (and hence to the physical correlation
length) this is no problem, because one gains a factor that
is exponentially large in the volume. The above proce-
dure obeys detailed balance because configurations with
more than two merons do not contribute to the observ-
ables we consider. Also, one can show that the algorithm
is still ergodic. The simple reject step eliminates almost
all configurations with weight 0 and is the essential step
to solve the other half of the fermion sign problem.

Since for large space-time volumes the two-meron sec-
tor is much larger than the zero-meron sector, without fur-
ther improvements one would still need statistics quadratic
(but no longer exponential) in the space-time volume to
accurately measure x . The remaining problem can be
solved with a reweighting technique similar to the one
used in [10]. To enhance the zero-meron configurations
in a controlled way, we introduce a trial probability pt�N�
for each N-meron sector. We set pt�N� for N . 2 to
infinity and use it in a Metropolis accept-reject step for
the newly proposed cluster connection on a specific pla-
quette interaction. A new connection that changes the
meron number from N to N 0 is accepted with probability
p � min�1, pt�N��pt�N 0��. In particular, configurations
with N 0 . 2 are never generated because then pt�N 0� �
` and p � 0. After visiting all plaquette interactions,
each cluster is flipped with probability 1�2 which com-
pletes one update sweep. After reweighting, the zero- and
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TABLE I. Numerical results for �Sign� and x obtained with
algorithm A1 and x obtained with algorithm A2.

L bU 4M �Sign� �A1� x �A1� x �A2�
6 1.0 64 0.696(1) 13.44(2) 13.43(2)
8 1.0 64 0.536(3) 13.53(3) 13.52(3)
8 2.0 128 0.0164(5) 199(3) 203(2)
8 4.0 256 0.000 52(7) 690(100) 729(9)

12 8.0 512 · · · · · · 3090(130)

two-meron configurations appear with similar probabili-
ties. This completes the second step in our solution of
the fermion sign problem. The reweighting of the zero-
and two-meron configurations is taken into account in the
final expression for the susceptibility as

x �
�
P

C jOCj
2dN ,0pt�0� 1 2jOC1 j jOC2 jdN ,2pt�2��

Vb�dN ,0pt�0��
.

(7)

We have implemented the meron cluster algorithm
in �2 1 1� dimensions and have tested it using exact
diagonalization results on small lattices. Table I contains
a comparison of results obtained with two algorithms us-
ing the same number of sweeps in both cases. The first
algorithm (A1) has the improved estimators and solves
one-half of the sign problem. The second algorithm
(A2) has both the improved estimators and the additional
Metropolis step and also solves the other half of the prob-
lem. The algorithm A2 is clearly superior once the aver-
age sign becomes small. In particular, we have applied A2
to systems of size V � 122 at a low temperature bU � 8.
This is far beyond reach of standard fermion algorithms
and even of the algorithm A1. It should be noted that our
model has a very severe sign problem which persists after
integrating out the fermions even at half-filling.

Cluster representations in general and the meron concept
in particular are more than mere algorithmic tools. In fact,
we have shown that the fermionic partition function can
be expressed as a classical statistical mechanics system
of clusters. The cluster formulation is a novel type of
bosonization which works in any dimension. In this
formulation the Pauli principle manifests itself by the
vanishing Boltzmann weight of a configuration containing
meron clusters. If we ignore the fermion permutation sign,
the theory describes a gas of merons and non-merons with a
large configuration space. Including the sign factor forces
even numbers of merons to be bound into non-merons. As
a consequence, in agreement with the Pauli principle, the
configuration space is very restricted. The merons allow
us to simulate fermions with local bosonic variables. This
is much more efficient than integrating out the fermions,
which leads to nonlocal bosonic effective actions.
While the details of our algorithm are specific to the
fermion model we have considered, the two basic ideas
behind it are general and apply to a variety of models.
They lead to a complete solution of the fermion sign
problem for models of relativistic staggered fermions [11]
as well as for nonrelativistic fermions with spin. In
applications of the meron-cluster algorithm to systems in
the Hubbard model family we have so far not found high-
temperature superconductivity. Meron-cluster algorithms
are also applicable to quantum spin models in an arbitrary
magnetic field for which a similar type of sign problem
arises. Similarly, one can solve the sign problem resulting
from a complex action in the 2D O�3� model at nonzero
chemical potential or at nonzero vacuum angle u. The next
challenge is to find applications of this method to QCD at
nonzero baryon density. It seems likely that progress along
the lines discussed here can be made in the quantum link
D-theory formulation of the problem [12,13].
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