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Radiation Corrections Increase Tunneling Probability
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We calculate the QED effect of the renormalization of the bare potential for the tunneling of a
charged particle due to the interaction with its own radiation field (an analog of the Lamb shift for
tunneling). It is demonstrated that radiative corrections increase the tunneling probability.
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The interaction of a tunneling object with other degrees
of freedom of the system and the influence of this
interaction on the tunneling probability for a long time
was a topic of intensive studies initiated by Caldeira and
Leggett [1]. Their general conclusion, in agreement with
intuitive arguments, was that for a fixed potential barrier
any friction-type interaction suppresses the tunneling. At
the same time, it was realized that an interaction of the
global tunneling coordinate with other degrees of freedom
leads to the barrier renormalization which acts in the
opposite direction being helpful in endorsing the tunneling
[2]; see also the review paper [3]. The simplest effect is
associated with the interaction of the tunneling particle
with the vibrational modes of the source responsible for
the existence of the barrier. This is important for the
probabilities of subbarrier nuclear reactions as pointed out
by Esbensen [4]. In the last decade, many experimental
and theoretical efforts were devoted to the understanding
of related aspects of subbarrier reactions, see the recent
review [5] and references therein.

For any charged object moving in a static external
potential, the interaction with the electromagnetic field
always accompanies motion of the object. Below we
show that the interaction with the virtual photon field,
in agreement with the statement of [2], renormalizes the
barrier and increases the tunneling probability. To the
best of our knowledge, this QED effect, which can be
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considered as a tunneling counterpart for the Lamb shift
of discrete levels [6], was not calculated earlier. As in the
Lamb shift, the result is specific for each original “bare”
potential. The effect should not be confused with a number
of similar effects considered in the context of condensed
matter physics, for example [7–9], which do not depend
on the form of the bare barrier. Being independent of spin
of the particle, it differs also from the similar Darwin term
in the fine structure Hamiltonian which originates from the
admixture of small bispinor components. However, the
result is not universal and can be different for different
boson fields and different interaction vertices.

Formally speaking, we are looking for the effects of ra-
diative corrections on the single-particle tunneling. These
effects can be described by the Schrödinger equation with
the self-energy operator

ĤC�r� 1
Z

S�r, r0; E�C�r0� d3r 0 � EC�r� , (1)

where Ĥ is the unperturbed particle Hamiltonian, which
includes a barrier potential, and S � M 2 iG�2 is the
complex nonlocal and energy-dependent operator deter-
mined by the coupling to virtual photons and by a
possibility of real photon emission. In the one-photon
approximation the self-energy due to the interaction with
the transverse radiation field can be written as
S�r, r0; E� �
X
k,l

jgkj
2

X
n

�rj�p̂ ? ekl�eikr̂jn� �nj�p̂ ? e�
kl�e2ikr̂jr0�

E 2 En 2 vk 2 i0
. (2)
Here we sum over unperturbed stationary states jn� with
energy En; r̂ and p̂ are the position and momentum
operators, respectively. The states jn� belong to the
continuous spectrum in the decay problem (scattering
states) or to the discrete spectrum as in a double, or
multiple, well potential. The photons are characterized
by the momentum k, frequency vk, and polarization
l; the polarization vectors ekl are perpendicular to k
so that the momentum operators commute with the ex-
ponents. The normalization factors are included in gk ~

v
21�2
k . We need to emphasize that the only approxima-
tion in Eq. (2) is the one-photon truncation of interme-
diate states which retains the lowest order terms in the
fine structure constant. The description (1) using the non-
Hermitian and energy-dependent effective Hamiltonian
can be rigorously derived by eliminating photon degrees
of freedom [10]. A similar approach to one-body con-
tinuum channels is widely used in nuclear reaction the-
ory [11,12]. The relativistic generalization of (2) is
straightforward.

The Hermitian part M of the self-energy operator
is given by the principal value integral over photon
© 1999 The American Physical Society
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frequencies in (2). The expectation value of M is re-
sponsible for the Lamb shift of bound energy levels. It
contains also the mass renormalization for a free particle
which should be subtracted (for a dissipative system the
mass renormalization was discussed in [8]). Our problem
is different from the energy shift calculation for bound
states since we are interested in those changes of the wave
function of the tunneling particle which can influence the
exponentially small penetration probability. However, we
can exploit some features of the conventional approach.
As well known from the Lamb shift calculations, one can
use different approximations in the two regions of integra-
tion over the photon frequency v. In the nonrelativistic
low-frequency region, v , bm, where the parameter
b , 1 is chosen in such a way that typical excitation en-
ergies of a particle in the well dE are smaller than bm (in
the hydrogen Lamb shift problem a fine structure constant
a can play the role of the borderline scale parameter), it
is possible to neglect the exponential factors in (2). The
high-frequency contribution to M, where the potential can
be considered as a perturbation to free motion, has been
calculated, e.g., in Ref. [6]. The two contributions match
smoothly at v � bm, which means that the transitional
region is not essential for the final result.

It is easy to estimate the mass operator M with loga-
rithmic accuracy. After summation over polarizations and
standard regularization [6], the low-frequency part of the
operator M can be written as

M̂�E� �
2Z2a

3pm2

Z
dv

X
n

p̂jn�
E 2 En

E 2 En 2 v
�njp̂ , (3)

where Ze is the particle charge and m is the mass of the
particle (reduced mass in the alpha-decay case). We use
the units h̄ � c � 1. Substituting the logarithm arising
from the frequency integration by its average value L �
ln�bm�vmin�, we can use the closure relations and obtain
a simple expression

M̂�E� �
2Z2a

3pm2 Lp̂�Ĥ 2 E�p̂ (4)

�
Z2a

3pm2 L�=2Û 1 ��Ĥ 2 E�, p̂2�1	 . (5)

The mean value of the term with the anticommutator
�. . . , . . .�1 in Eq. (5) is equal to zero since �Ĥ 2 E�C0 �
0, where C0 is the unperturbed wave function. A small
correction to the wave function due to this term can be cal-
culated by using perturbation theory and the unperturbed
Schrödinger equation,

dC �
2Z2a

3pm
L�U 2 �0jUj0��C0 . (6)

This correction is not essential for our purpose since it does
not influence the exponent in the tunneling amplitude.

Combining the remaining term in Eq. (5) with the high-
frequency contribution which contains L � ln�m�bm�
(see Ref. [6]), the result can be presented as an effective
local operator proportional to the Laplacian =2U�r�,

M�r, r0; E� 
 =2U�r�d�r 2 r0�
Z2a

3pm2 ln
m
U0

� dU�r�d�r 2 r0� . (7)

Here we used the barrier height U0, with respect to energy
E, as a lower cutoff vmin of the integration over frequen-
cies (below we give a semiclassical estimate which leads
also to a more accurate evaluation of the logarithmic fac-
tor). For the tunneling of an extended object, the mass m
in the argument of the logarithm should be replaced by the
inverse size of the particle 1�r0 which comes from the up-
per frequency cutoff given in this case by the charge form
factor. The obtained result is physically equivalent to the
averaging over the position fluctuations due to the cou-
pling to virtual photons. Thus, in the logarithmic approxi-
mation the mass operator is reduced to a local correction
dU�r� to the potential U�r�. One may note that the result
depends on the properties of the field coupled to the par-
ticle. In the case of a Dirac particle coupled to the pseu-
doscalar meson field, the vertex �p̂ ? e� is substituted by
�s ? k� where s is the fermion spin operator and k is the
meson momentum. Then the main effect reduces to the
recoil of the particle because of the meson emission [for-
mally it follows from the identity exp�ik ? r�Ĥ�r, p� 3

exp�2ik ? r� � Ĥ�r, p 2 k�].
The Laplacian of the potential energy =2U�r� near

the maximum of the barrier is negative (correspondingly,
near the bottom of the potential well it is positive).
Therefore, we obtained the negative correction dU�r�
to the potential barrier which leads to a conclusion that
jiggling of the photon increases the tunneling amplitude
of the particle. The numerical value of the correction
to the potential is small, �1 keV, for the alpha decay,
and increases correspondingly for the high-Z fission
fragments. Even a small effect may be noticeable in some
cases due to the exponential dependence on the height of
the barrier (recall the notorious cold fusion problem or
atom ionization by the electric field). This effect should
be added to other “small effects in astrophysical fusion
reactions” considered in [13]. In contrast to the Uehling
vacuum polarization potential [14] which exists for a
pure Coulomb case, the effective operator (7) vanishes
if =2U � 0, being sensitive to the charge distribution.
Through atomic electron screening, it may effect low-
energy nuclear reactions of astrophysical interest.

In the double well problem, the accelerated tunneling
increases the exponentially small splitting between the
stationary states of opposite parity. Also, there exist
theories like QCD where the radiation corrections are
not small. In many-body systems one can use collective
modes, as phonons, to transfer energy. This can influence
electron tunneling through quantum dots or insulating
surfaces. As we have already mentioned, the interaction
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between a tunneling particle and vibrational nuclear environment is known to be important in sub-barrier nuclear fission
and fusion [5].

An analysis can be performed more in detail by using the semiclassical WKB approximation for the tunneling wave
functions. The semiclassical radial Green function of unperturbed motion under the barrier can be written in terms of
the classical momentum in the forbidden region, p�r; E� � �2m�U�r� 2 E�	1�2, at a given energy E as

G�r , r 0; E� � 2m�p�r�p�r 0��21�2�e2
Rr

r0
dj p�j�

Q�r 2 r 0� 1 e
2

Rr0

r
dj p�j�

Q�r 0 2 r�	 , (8)
where Q�x� is the step function. The full three-
dimensional Green function Ĝ�E� �

P
n jn� �E 2

En�21�nj contains also angular harmonics which could
be separated in a routine way, accounting for the fact
that in the long wavelength approximation for the s-wave
solution the intermediate states are p waves. Indeed, the
operator of electric dipole radiation p̂ converts an initial
s-wave C in Eq. (1) into an intermediate p-wave state
jn�. Therefore, it is sufficient to keep the p-wave part of
the radial Green function and to use closure in the sum
over angular harmonics.

The kernel of the integral term in the Schrödinger
equation (1) contains

K�r , r 0; E� �
Z

dv G�r , r 0; E 2 v� . (9)

The integrand consists of terms falling exponentially as
jr 2 r 0j increases. The potential U�r� is assumed to be
a smooth function. Therefore, we can put p�r 0� 
 p�r�.
Now it is easy to perform the integration over v in Eq. (9)
which leads to

K�r , r 0; E� � 2
1

jr 2 r 0j
�e2pminjr2r 0j 2 e2pmaxjr2r 0j	 ,

(10)

where pmin � �2m�Up�r� 2 E�	1�2, pmax � �2b�1�2m,
and Up�r� is the effective p-wave radial potential which
includes the centrifugal part. This expression has a
very narrow maximum near r � r 0 with the width
jr 2 r 0j � 1�pmax. This is a measure of nonlocality of
3110
the self-energy operator M�r , r 0; E�. In any nonrelativis-
tic application the kernel can be treated as proportional
to the delta function. The proportionality coefficient can
be found by the integration over r . Thus, we obtain the
local behavior of the kernel,

K�r , r 0; E� 
 2L�r�d�r 2 r 0� , (11)

where now we determine the lower limit of the logarithm
which has appeared in our previous derivation (7) as
related to the local value of the potential,

L�r� � ln
m

jUp�r� 2 Ej
. (12)

The substitution into Eq. (7) gives

dU�r� �
Z2a

3pm2 ln
m

jUp�r� 2 Ej
=2U�r� . (13)

As usual, this semiclassical expression is not valid near
the turning points where Up�r� � E. However, a very
weak logarithmic singularity does not produce any practi-
cal limitations on the applicability of Eq. (13).

The conclusion of enhancement of the tunneling proba-
bility seems to contradict one’s common sense: radiation
should cause energy losses and reduce the tunneling
amplitude of the charged particle. However, such an
argument may be valid only for the real photon emission.
This emission is described by the anti-Hermitian part of
the self-energy operator which is originated from the delta
function corresponding to on-shell processes,
G�r, r0; E� �
4Z2a

3m2

Z
dv

X
n

�rjp̂eikr̂jn� �njp̂e2ikr̂jr0�vd�E 2 En 2 v� . (14)
Because of the energy conservation the sum here includes
only states jn� with energy En below E. Consider, for
example, the tunneling from the ground s state. A dipole
transition transfers the particle from the s state to a p
state. However, there are no quasidiscrete p states jn�
below the ground state in the potential well. Scattering p
waves can penetrate the potential barrier from the contin-
uum with an exponentially small amplitude. This means
that G�r, r0; E� is again exponentially small if one or both
arguments r and r0 are under the barrier or inside the
potential well. Therefore, G�r, r0; E� does not consider-
ably influence the tunneling amplitude. The reason for
that can be easily understood. A real radiation would be
impossible if there were no tunneling; whence the radia-
tion width must vanish together with the tunneling width.
On the contrary, the real part of S under the barrier
would be present even if the tunneling probability would
vanish.

To avoid misunderstanding we need to stress that the
contribution to the radiation intensity from the barrier area
and the potential well, which was, in application to the nu-
clear alpha decay, the subject of recent experimental [15]
and theoretical [16 –19] studies, still may be important.
The radiation amplitude with Es 2 Ep � v contains the
matrix element

�sjp̂jp� �
1
v

�sj�Ĥ, p̂�jp� �
i
v

�sj=Ujp� . (15)
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When one moves inside the barrier from the outer
turning point inwards, the resonance s-wave func-
tion exponentially increases while the nonresonance
p-wave function exponentially decreases. As a result,
the product cs�r�cp�r� does not change considerably.
This means that the contribution to the real radia-
tion from the inner area may be comparable to that
from the area outside the barrier. The gradient =U
changes its sign near the maximum of the potential
which implies a destructive interference between the
radiation from the different areas [since js� is the
nonoscillating ground state wave function, the product
cs�r�cp�r� does not change sign inside the barrier]. The
resulting complicated pattern was discussed in detail
in [18].

The QED effect considered above reminds one of the
feat of the famous baron von Münchhausen who saved
himself from the swamp by pulling his hair by his
own hand [20]. The advanced part of the wave func-
tion of a charged tunneling particle can send a photon
to the rear part which absorbs this photon and pene-
trates the barrier with enhanced probability. The “pho-
ton hand” here connects two points r and r0 of the same
wave function, and, as we have seen, these points are
close to each other effectively renormalizing the local
potential. This Münchhausen mechanism with a pho-
ton feedback may be particularly helpful for a com-
posite system. In the tunneling of a two-body object,
the first particle, while continuing to be accelerated by
a bell shaped potential after the tunneling, can emit
a (virtual) photon that increases energy of the second
particle and its tunneling probability. As compared to
phonon assisted tunneling this mechanism does not re-
quire any special device, being automatically provided by
the interaction of a charged particle with the radiation
field.
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