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Prior entanglement between sender and receiver, which exactly doubles the classical capaci
noiseless quantum channel, can increase the classical capacity of some noisy quantum chan
an arbitrarily large constant factor depending on the channel, relative to the best known cla
capacity achievable without entanglement. The enhancement factor is greatest for very noisy ch
with positive classical capacity but zero quantum capacity. We obtain exact expressions fo
entanglement-assisted capacity of depolarizing and erasure channels ind dimensions.
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Prominent among the goals of quantum information th
ory are understanding entanglement and calculating
several capacities of quantum channels. Physically,
quantum channel can be pictured as the transfer of so
quantum system from sender to receiver. If the transf
is intact and undisturbed, the channel is noiseless; if t
quantum system interacts en route with some other syste
a noisy quantum channel results. Quantum channels c
be used to carry classical information, and, if they are n
too noisy, to transmit intact quantum states and to sha
entanglement between remote parties. Unlike classi
channels, which are adequately characterized by a sin
capacity, quantum channels have several distinct capa
ties. These include a classical capacityC, for transmitting
classical information, a quantum capacityQ, for transmit-
ting intact quantum states, a classically assisted quant
capacityQ2, for transmitting intact quantum states with
the help of a two-way classical side channel, and final
CE , the entanglement-assisted classical capacity, which
we define as a quantum channel’s capacity for transmitti
classical information with the help of unlimited prior pure
entanglement between sender and receiver [1]. In m
cases, only upper and lower bounds on these capacities
known, not the capacities themselves [2].

Entanglement, e.g., in the form of Einstein-Podolsky
Rosen (EPR) pairs of particles shared between two p
ties, interacts in subtle ways with other communication
resources. By itself, prior entanglement between send
and receiver confers no ability to transmit classical in
formation, nor can it increase the capacity of a classic
channel above what it would have been without the enta
glement. This follows from the fact that local manipula
tion of one of two entangled subsystems cannot influen
the expectation of any local observable of the other su
system [3,4]. This is sometimes loosely called the co
straint of causality, because its violation would make
possible to send messages into one’s past.

On the other hand, it is well known that prior entan
glement can enhance the classical capacity ofquantum
channels. In the effect known as superdense coding, d
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covered by Wiesner [5], the classical capacity of a noi
less quantum channel is doubled by prior entangleme
In other words,CE � 2C for any noiseless quantum chan
nel. We show that for some channels this enhancem
persists, and even increases, as the channel is made
noisy, even after the channel has become so noisy tha
quantum capacitiesQ andQ2 both vanish, and the chan
nel itself can be simulated by local actions and classi
communication between sender and receiver [1].

This is perhaps surprising, since it might seem th
any quantum channel that can be classically simula
ought to behave as a classical channel in all respect
in particular, not having its capacity increased by pri
entanglement. In fact there is no contradiction, becau
as we shall see, even when a quantum channel can
classically simulated, the simulation necessarily involv
some amount of forward classical communication fro
the sender (henceforth “Alice”) to the receiver (“Bob”
and this information is never less than the channe
entanglement-assisted capacity. Thus for any quan
channel,C # CE # FCCC, where FCCC denotes the
forward classical communication cost, i.e., the forwa
classical capacity needed, in conjunction with other
sources, to simulate the quantum channel.

To illustrate these inequalities, consider a specific e
ample, the 2�3-depolarizing qubit channel, which trans
mits the input qubit intact with probability 1�3 and
replaces it by a random qubit with probability 2�3. As
is well known, this noisy quantum channel, sometim
referred to as the classical limit of teleportation, can
simulated classically by the following “measure/repr
pare” procedure: A third party chooses a random a
R and tells both Alice and Bob. Then Alice measures t
input qubit along this axis and tells Bob the one-bit resu
after which Bob prepares an output qubit in the same s
found by Alice’s measurement. Evidently theFCCC of
this procedure is 1 bit, but the best known classical cap
ity of a 2�3-depolarizing channel (realized by encoding
and 1 asj0� and j1� on the input side and measuring i
the same basis on the output side) is about 0.0817 b
© 1999 The American Physical Society 3081
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the capacity of a classical binary symmetric channel of
crossover probability 1�3. As we shall show, the CE of
the 2�3-depolarizing channel is about 0.2075 bits, more
than twice the unassisted value, but still safely less than
the 1 bit forward classical cost of simulating the channel
by measure/reprepare, which we denote FCCCMR.

Suppose we wished to simulate not a 2�3-depolarizing
channel, but a 5�6-depolarizing channel. Clearly, this
could be done by simulating the 2�3-depolarizing chan-
nel, then further depolarizing its output. But a more eco-
nomical simulation would be for Alice to send her one-bit
measurement result to Bob not through a noiseless clas-
sical channel but through a noisy classical channel of
correspondingly lesser capacity. If she sent it through
a binary symmetric channel of randomization probabil-
ity 1�2 (equivalent to a crossover probability 1�4), the
5�6-depolarizing channel would have been simulated at
an FCCCMR of only 1 2 H2�1�4� � 0.1887 bits per
channel use, where H2 is the binary Shannon entropy
H2�p� � 2p log2 p 2 �1 2 p� log2�1 2 p�. This is of
course greater than the 5�6-depolarizing channel’ s best
known classical capacity of 1 2 H2�5�12� � 0.020 13.
The 5�6-depolarizing channel’ s entanglement-assisted ca-
pacity must lie between these two bounds.

We now develop these ideas further to obtain an ex-
act expression for CE for an important class of channels,
the d-dimensional depolarizing channel D �d�

x of depo-
larization probability x. This is the channel that trans-
mits a d-state quantum system intact with probability
1 2 x and randomizes its state with probability x. We
show that in the high-depolarization limit x ! 1 this
channel’ s entanglement-assisted capacity is �d 1 1�-fold
higher than the best known lower bound on the classi-
cal capacity of the same channel without prior entangle-
ment. This lower bound, the “one-shot” classical capacity
C1, is defined as the maximum classical information that
can be sent through a single use of the channel, with-
out prior entanglement, by an optimal choice of source
states at the channel input and an optimal measurement
at the channel output. For this highly symmetric channel,
this optimum can be achieved by assigning equal proba-
bility 1�d to each state of an arbitrary orthonormal basis
�j0�, j1�, . . . , jd 2 1�� at the channel input, and performing
a complete von Neumann measurement in the same basis
at the channel output. This causes the quantum channel
to behave as a d-ary symmetric classical channel of ran-
domization probability x, giving a capacity

C1�D �d�
x � � log2 d 2 Hd

µ
1 2 x

�d 2 1�
d

∂
, (1)

where Hd�p� � 2p log2�p� 2 �1 2 p� log2��1 2

p���d 2 1�	 is the Shannon entropy of a d-ary distribu-
tion consisting of one element of probability p and d 2 1
elements each of probability �1 2 p���d 2 1�. This
input ensemble is known to be optimal, for a one-shot
use of the channel, because it saturates the Holevo bound
3082
C1 # log2d 2 S�ri�, on the one-shot capacity [6], where
S�ri� is the average von Neumann entropy of the output
states ri .

Similarly, it is easy to generalize the measure/repre-
pare construction to show that a d-dimensional depo-
larizing channel can be simulated classically whenever
x $ d��d 1 1�, at a cost

FCCCMR�D �d�
x � � log2�d� 2 Hd�d 2 x�d 2 �1�d�	� .

(2)

The simulation is performed by having Alice measure in
a preagreed random basis, send Bob the result through a
d-ary symmetric noisy classical channel, after which he
reprepares an output state in the same basis. Figure 1
compares the definitions of asymptotic capacity C and
one-shot capacity C1, and illustrates the measure/repre-
pare technique for simulating some noisy quantum chan-
nels classically.

So far, we have given only lower and upper bounds
on CE , without calculating CE itself. To do so, we use

FIG. 1. (a) The classical capacity C of a quantum channel N
is the optimal asymptotic input:output mutual information per
channel use achievable by a preparator P mapping classical
inputs (thick lines) to a possibly entangled input state supplied
to multiple instances of the quantum channel, and a collective
measurement M mapping the possibly entangled output state
back to classical data. (b) The one-shot classical capacity C1
is the maximum classical mutual information between input
preparations and output measurement results for a single use
of the channel. (c) Some quantum channels N , acting on
an unknown quantum input j, can be simulated classically
by having Alice measure the quantum input in a common
random basis R, send Bob the result through a noiseless or
noisy classical channel n, after which he uses it to reprepare
an approximation N �j� to the quantum input j at the channel
output. The forward classical communication cost (FCCCMR)
of this simulation is the classical (Shannon) capacity of the
internal classical channel n. Allowing n to be noisy makes N
more noisy, but reduces FCCCMR.
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modified versions of the well-known superdense coding [5]
and teleportation [3] protocols to obtain tighter lower and
upper bounds, respectively, which in the case of depolariz-
ing and erasure channels coincide, thereby establishing CE

exactly for these channels. We treat the case where N is
a generalized depolarizing channel D �d�

x first.
Clearly, CE for any noisy channel N can be lower-

bounded by the entanglement-assisted capacity via a par-
ticular protocol, namely, superdense coding with the noisy
quantum channel N substituted for the usual noiseless
return path for Alice’ s half of a shared maximally entan-
gled EPR state C. This version of superdense coding is
illustrated in Fig. 2a, and we shall use CSd�N � to denote
the entanglement-assisted capacity of N via this proto-
col. Conversely (Fig. 2b), CE�N � can be upperbounded
by the forward classical communication cost of simulating
N , not by measure/reprepare, but by a version of telepor-
tation in which the requisite amount of noise is introduced
by substituting a noisy classical channel N for the usual
noiseless classical arm of the teleportation procedure (the
classical channel N operates on a d2-letter classical alpha-
bet, in contrast to the d-letter alphabet used by the channel
n in the measure/reprepare simulation of Fig. 1c). This
upper bound follows from the fact that even in the pres-
ence of prior shared entanglement, the FCCC of simu-
lating a quantum channel cannot be less than its classical
capacity; otherwise a violation of causality would oc-
cur. Whenever a quantum channel N can be simu-
lated by teleportation with a noisy classical arm, we use
FCCCTp�N � to denote the forward classical communi-
cation cost of doing so.

In the case of depolarizing channels, the two bounds
coincide, because of the readily verified fact that super-
dense coding and teleportation map each x-depolarizing

FIG. 2. (a) By using a noisy quantum channel N in the
protocol for superdense coding, one obtains a lower bound CSd
on its entanglement-assisted capacity CE�N �. (b) By using
a noisy classical channel N in the protocol for teleportation to
simulate a quantum channel N , one obtains an upper bound
FCCCTp on CE�N �. When these two bounds coincide, they
give CE�N � exactly.
d-dimensional quantum channel into an x-randomizing
d2-ary symmetric classical channel and vice versa. Thus,
for all depolarizing channels D �d�

x ,

CE � CSd � FCCCTp

� 2 log2d 2 Hd2

µ
1 2 x

d2 2 1
d2

∂
. (3)

From Eqs. (1) and (3), it can be seen that in the high-noise
limit x ! 1, the enhancement factor CE�C1 approaches
d 1 1. Thus, prior entanglement can increase classical
capacity by an arbitrarily large factor. For large d,
CE�C1 � 2 for most x, rising sharply near x � 1.

We now turn to the quantum erasure channel [7],
which is unusual among noisy quantum channels in that
its capacities C, Q, and Q2 are known exactly [2]. A
quantum erasure channel transmits its d-dimensional input
state intact with probability 1 2 x, and with probability x
replaces the input by a unique �d 1 1�th state, called an
erasure symbol, orthogonal to all the input states. If the
channels N and N in Fig. 2 are taken to be, respectively,
a d-dimensional quantum erasure channel and a d2-
dimensional classical erasure channel, the superdense
coding and teleportation bounds can again easily be
shown to coincide, providing an entanglement-assisted
capacity CE � 2�1 2 x� logd, exactly twice the erasure
channel’ s ordinary classical capacity.

Figure 3 (left) shows all the capacities of the quan-
tum erasure channel. These capacities are of interest not
only in their own right, but also because they upperbound
the corresponding capacities of the depolarizing channel,
since a quantum erasure channel can simulate a depolar-
izing channel by having the receiver substitute a fully de-
polarized state for every erasure symbol he receives.

Returning to the depolarizing channel, we are in the pe-
culiar position of knowing its entanglement-assisted clas-
sical capacity CE without knowing its ordinary unassisted
classical capacity C. The latter is generally believed to be
equal to the one-shot unassisted capacity C1, but the pos-
sibility cannot be excluded that a higher capacity might
be achieved asymptotically by supplying entangled inputs
to multiple instances of the channel (this cannot occur for
CE , where any larger capacity would exceed FCCCTp ,
violating causality). The range of possible values for
the depolarizing channel’ s unassisted classical capacity

FIG. 3. Left: Capacities of the quantum erasure channel.
Right: Bounds on the asymptotic classical capacity C of the
qubit depolarizing channel.
3083



VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999
C is bounded below by its known C1, and above by its
known CE and by the known unassisted classical capacity
�1 2 x� logd of the quantum erasure channel. Figure 3
(right) shows these bounds for the qubit case d � 2.

Although the depolarizing channel’ s unassisted capac-
ity C remains unknown in absolute terms for all d,
the bounds C1 # C # �1 2 x� logd become increasingly
tight relative to C as d ! `, because, as can readily be
verified, the difference between the bounds approaches
H2�x� in this limit. Similarly, the depolarizing channel’ s
unassisted quantum capacity Q is upperbounded by the
erasure channel’ s quantum capacity, max�0, 1 2 2x� logd,
and lowerbounded by the depolarizing channel’ s quan-
tum capacity via random hashing [8], logd 2 S��N ≠
I	 �C�	. Here �N ≠ I	 �C� is the mixed state formed
by sending half a maximally entangled d ≠ d pair C

through the noisy channel. Again the difference between
the bounds approaches H2�x� as d ! `.

The equality between FCCCTp and CSd, which makes
CE exactly calculable for depolarizing channels, holds
for all “Bell-diagonal” channels [8], those that com-
mute with superdense coding and teleportation, so that
Tp�Sd�N �	 � N [9]. For example, the qubit dephas-
ing channel, which subjects its input to a sz Pauli rotation
with probability x�2, has C � 1 independent of x, while
CE � 2 2 H2�x�2�. For other channels, it can be shown
[10] that

CE � max
C

�S�r� 1 S���N �r���� 2 S����N ≠ I	 �C����� ,
(4)

where C is a bipartite pure state in d ≠ d, and r is its
partial trace over the second party. This capacity can be
achieved asymptotically by applying superdense coding
to a Schumacher-compressed version of r≠n for large n,
and evaluating the resulting classical capacity by Holevo’s
formula [6]; that CE can be no higher can be shown
[10] using Holevo’s formula and the strong subadditivity
property of quantum entropy.

A channel’ s entanglement-assisted quantum capacity
QE may be defined as its maximum rate for transmitting
intact qubits with the help of prior entanglement but no
classical communication. By teleportation and superdense
coding, QE � CE�2 for all channels. Naturally, QE

upperbounds the unassisted quantum capacity Q, but in
most instances, e.g., the depolarizing channel, tighter
upper bounds are known.
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