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We investigate the quantization of nonzero sum games. For the particular case of the Pris
Dilemma we show that this game ceases to pose a dilemma if quantum strategies are allowed fo
also construct a particular quantum strategy which always gives reward if played against any cla
strategy.
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One might wonder what games and physics could p
sibly have in common. After all, games such as chess
poker seem to heavily rely on bluffing, guessing, and oth
activities of unphysical character. Yet, as was shown
von Neumann and Morgenstern [1], conscious choice
not essential for a theory of games. At the most abstr
level, game theory is about numbers that entities are e
ciently acting to maximize or minimize [2]. For a quantum
physicist it is then legitimate to ask what happens if line
superpositions of these actions are allowed for, that is
games are generalized into the quantum domain.

There are several reasons why quantizing games m
be interesting. First, classical game theory is a we
established discipline of applied mathematics [2] whi
has found numerous applications in economy, psycholo
ecology, and biology [2,3]. Since it is based on probab
ity to a large extent, there is a fundamental interest
generalizing this theory to the domain of quantum prob
bilities. Second, if the “Selfish Genes” [3] are reality, w
may speculate that games of survival are being played
ready on the molecular level, where quantum mechan
dictates the rules. Third, there is an intimate connect
between the theory of games and the theory of quant
communication. Indeed, whenever a player passes his
cision to the other player or the game’s arbiter, he in fa
communicates information, which—as we live in a qua
tum world—is legitimate to think of as quantum infor
mation. On the other hand, it has recently transpired t
eavesdropping in quantum-channel communication [4–
and optimal cloning [7] can readily be conceived in
strategic game between two or more players, the objec
being to obtain as much information as possible in a giv
setup. Finally, quantum mechanics may well be useful
win some specially designed zero-sum unfair games, s
as PQ penny flip, as was recently demonstrated by Me
[8], and it may ensure fairness in remote gambling [9].

In this Letter we consider nonzero sum games where
in contrast to zero-sum games—the two players no lon
appear in strict opposition to each other, but may rath
benefit from mutual cooperation. A particular instance
this class of games, which has found widespread appli
tions in many areas of science, is the Prisoners’ Dilemm
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In the Prisoners’ Dilemma, each of the two player
Alice and Bob, must independently decide whether s
or he chooses to defect (strategyD) or cooperate (strategy
C). Depending on their decision, each player receives
certain payoff—see Table I. The objective of each play
is to maximize his or her individual payoff. The catch o
the dilemma is thatD is thedominant strategy, that is, ra-
tional reasoning forces each player to defect, and there
doing substantially worse than if they would both decid
to cooperate [10]. In terms of game theory, mutual defe
tion is also aNash equilibrium [2]: in contemplating the
moveDD in retrospect, each of the players comes to t
conclusion that he or she could not have done better
unilaterally changing his or her own strategy [11].

In this paper we give a physical model of the Prison
ers’ Dilemma, and we show that—in the context of th
model—the players escape the dilemma if they both r
sort to quantum strategies. Moreover, we shall demo
strate that (i) there exists a particular pair of quantu
strategies which always gives a reward and is a Nash eq
librium and (ii) there exists a particular quantum strateg
which always gives, at least, a reward if played again
any classical strategy.

The physical model consists of (i) a source of two bit
one bit for each player, (ii) a set of physical instrumen
that enables the player to manipulate his or her own bit in
strategic manner, and (iii) a physical measurement dev
which determines the players’ payoff from the state of th
two bits. All three ingredients, the source, the player
physical instruments, and the payoff physical measurem
device are assumed to be perfectly known to both playe

TABLE I. Payoff matrix for the Prisoners’ Dilemma. The
first entry in the parenthesis denotes the payoff of Alic
and the second number the payoff of Bob. The numeric
values are chosen as in [3]. Referring to Eq. (2), this choi
corresponds tor � 3 (“reward ”), p � 1 (“punishment ”), t �
5 (“ temptation”), and s � 0 (“sucker’s payoff ”).

Bob: C Bob: D

Alice: C �3, 3� �0, 5�
Alice: D �5, 0� �1, 1�
© 1999 The American Physical Society 3077
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The quantum formulation proceeds by assigning the
possible outcomes of the classical strategies D and C to
two basis vectors jD� and jC� in the Hilbert space of a
two-state system, i.e., a qubit. At each instance, the state
of the game is described by a vector in the tensor product
space which is spanned by the classical game basis jCC�,
jCD�, jDC�, and jDD�, where the first and second entries
refer to Alice’s and Bob’s qubits, respectively.

The board of our quantum game is depicted in Fig. 1;
it can in fact be considered a simple quantum network
[12] with sources, reversible one-bit and two-bit gates,
and sinks. Note that the complexity is minimal in this
implementation as the players’ decisions are encoded in
dichotomic variables.

We denote the game’s initial state by jc0� � Ĵ jCC�,
where Ĵ is a unitary operator which is known to both
players. For fair games, Ĵ must be symmetric with respect
to the interchange of the two players. The strategies are
executed on the distributed pair of qubits in the state
jc0�. Strategic moves of Alice and Bob are associated
with unitary operators ÛA and ÛB, respectively, which are
chosen from a strategic space S. The independence of the
players dictates that ÛA and ÛB operate exclusively on the
qubits in Alice’s and Bob’s possession, respectively. The
strategic space S may therefore be identified with some
subset of the group of unitary 2 3 2 matrices.

Having executed their moves, which leaves the game
in a state �ÛA ≠ ÛB�Ĵ jCC�, Alice and Bob forward their
qubits for the final measurement which determines their
payoff. The measurement device consists of a reversible
two-bit gate J̃ which is followed by a pair of Stern-
Gerlach-type detectors. The two channels of each detector
are labeled by s � C, D. With the proviso of subsequent
justification, we set J̃ � Ĵ y, such that the final state
jcf � � jcf�ÛA, ÛB�� of the game prior to detection is
given by

jcf� � Ĵ y�ÛA ≠ ÛB�Ĵ jCC� . (1)

The subsequent detection yields a particular result, ss0 �
CD say, and the payoff is returned according to the cor-
responding entry of the payoff matrix. Yet, since quan-
tum mechanics is a fundamentally probabilistic theory, the
only strategic notion of a payoff is the expected payoff.
Alice’s expected payoff is given by

$A � rPCC 1 pPDD 1 tPDC 1 sPCD , (2)

where Pss0 � j�ss0 jcf �j2 is the joint probability that
the channels s and s0 of the Stern-Gerlach-type devices
will click. Bob’s expected payoff is obtained by inter-

FIG. 1. The setup of a two-player quantum game.
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changing t $ s in the last two entries (for numerical val-
ues of r , p, t, and s, see Table I). Note that Alice’s
expected payoff $A not only depends on her choice of
strategy ÛA, but also on Bob’s choice ÛB.

It proves to be sufficient to restrict the strategic space
to the 2-parameter set of unitary 2 3 2 matrices,

Û�u, f� �

√
eif cosu�2 sinu�2
2 sinu�2 e2if cosu�2

!
, (3)

with 0 # u # p and 0 # f # p�2. To be specific, we
associate the strategy “cooperate” with the operator,

Ĉ � Û�0, 0�, Ĉ �

√
1 0
0 1

!
, (4)

while the strategy “defect” is associated with a spin flip,

D̂ � Û�p , 0�, D̂ �

√
0 1

21 0

!
. (5)

In order to guarantee that the ordinary Prisoners’
Dilemma is faithfully represented, we impose the sub-
sidiary conditions

�Ĵ , D̂ ≠ D̂� � 0, �Ĵ , D̂ ≠ Ĉ� � 0 ,

�Ĵ , Ĉ ≠ D̂� � 0 .
(6)

These conditions, together with the identificationJ̃ �
Ĵ y, imply that, for any pair of strategies taken from
the subset S0 � 	Û�u, 0� ju [ �0, p�
, the joint proba-
bilities Pss0 factorize, Pss0 � p

�s�
A p

�s0�
B , where p�C� �

cos2�u�2� and p�D� � 1 2 p�C�. Identifying p�C� with
the individual preference to cooperate, we observe that
condition (6) in fact ensures that the quantum Prisoners’
Dilemma entails a faithful representation of the most gen-
eral classical Prisoners’ Dilemma, where each player uses
a biased coin in order to decide whether he or she chooses
to cooperate or to defect [13]. Of course, the entire set
of quantum strategies is much bigger than S0, and it is the
quantum sector SnS0 which offers additional degrees of
freedom which can be exploited for strategic purposes.
Note that our quantization scheme applies to any two-
player binary choice symmetric game and—due to the
classical correspondence principle [Eq. (6)]— is to a great
extent canonical.

Factoring out Abelian subgroups which yield nothing
but a reparametrization of the quantum sector of the
strategic space S, a solution of Eq. (6) is given by
Ĵ � exp	igD̂ ≠ D̂�2
, where g [ �0, p�2� is a real
parameter. In fact, g is a measure for the game’s
entanglement. For a separable game g � 0, and the
joint probabilities Pss0 factorize for all possible pairs
of strategies ÛA, ÛB. Figure 2 shows Alice’s expected
payoff for g � 0. As can be seen in this figure, for any
of Bob’s choices ÛB Alice’s payoff is maximized if she
chooses to play D̂. The game being symmetric, the same
holds for Bob, and D̂ ≠ D̂ is the equilibrium in dominant
strategies. Indeed, separable games do not display any
features which go beyond the classical game.
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FIG. 2. Alice’s payoff in a separable game. In this and the
following plot we have chosen a certain parametrization such
that the strategies ÛA and ÛB each depend on a single parameter
t [ �21, 1� only: We set ÛA � Û�tp, 0� for t [ �0, 1� and
ÛA � Û�0, 2tp�2� for t [ �21, 0� (same for Bob). Defection
D̂ corresponds to the value t � 1, cooperation Ĉ to t � 0, and
Q̂ is represented by t � 21.

The situation is entirely different for a maximally
entangled game g � p�2. Here, pairs of strategies exist
which have no counterpart in the classical domain, yet by
virtue of Eq. (6) the game behaves completely classical
if both players decide to play f � 0. For example,
PCC � j cos�fA 1 fB� cos�uA�2� cos�uB�2�j2 factorizes
on S0 ≠ S0 (i.e., fA � fB � 0 fixed), but exhibits non-
local correlations otherwise. In Fig. 3 we depict Alice’s
payoff in the Prisoners’ Dilemma as a function of the
strategies ÛA, ÛB. Assuming Bob chooses D̂, Alice’s
best reply would be

Q̂ � Û�0, p�2�, Q̂ �

√
i 0
0 2i

!
, (7)

while assuming Bob plays Ĉ, Alice’s best strategy would
be defection D̂. Thus, there is no dominant strategy left
for Alice. The game being symmetric, the same holds for
Bob, i.e., D̂ ≠ D̂ is no longer an equilibrium in dominant
strategies.
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FIG. 3. Alice’s payoff for a maximally entangled game. The
parametrization is chosen as in Fig. 2.
Surprisingly, D̂ ≠ D̂ even ceases to be a Nash equi-
librium as both players can improve by unilaterally
deviating from the strategy D̂. However, concomitant
with the disappearance of the equilibrium D̂ ≠ D̂ a
new Nash equilibrium Q̂ ≠ Q̂ has emerged with payoff
$A�Q̂, Q̂� � $B�Q̂, Q̂� � 3. Indeed, $A�Û�u, f�, Q̂� �
cos2�u�2� �3 sin2f 1 cos2f� # 3 for all u [ �0, p� and
f [ �0, p�2�, and analogously $B�Q̂, ÛB� # $B�Q̂, Q̂�
for all ÛB [ S such that no player can gain from unilater-
ally deviating from Q̂ ≠ Q̂. It can be shown that Q̂ ≠ Q̂
is a unique equilibrium, that is, rational reasoning dictates
that both players play Q̂ as their optimal strategy.

It is interesting to see that Q̂ ≠ Q̂ has the property to be
Pareto optimal [2], that is, by deviating from this pair of
strategies it is not possible to increase the payoff of one
player without lessening the payoff of the other player.
In the classical game, only mutual cooperation is Pareto
optimal, but it is not an equilibrium solution. One could
say that by allowing for quantum strategies the players
escape the dilemma [14].

The alert reader may object that—very much like
any quantum mechanical system can be simulated on a
classical computer— the quantum game proposed here
can be played by purely classical means. For instance,
Alice and Bob may each communicate their choice of
angles to the judge using ordinary telephone lines. The
judge computes the values Pss0 , tosses a four-sided coin
which is biased on these values, and returns the payoff
according to the outcome of the experiment. While
such an implementation yields the proper payoff in this
scenario, four real numbers have to be transmitted. This
contrasts most dramatically with our quantum mechanical
model which is more economical as far as communication
resources are concerned. Moreover, any local hidden
variable model of the physical scheme presented here
predicts inequalities for Pss0 , as functions of the four
angles uA, uB, fA, and fB, which are violated by the
above expressions for the expected payoff. We conclude
that in an environment with limited resources, it is only
quantum mechanics which allows for an implementation
of the game presented here.

So far we have considered fair games, where both
players had access to a common strategic space. What
happens when we introduce an unfair situation (Alice may
use a quantum strategy, i.e., her strategic space is still S,
while Bob is restricted to apply only “classical strategies”
characterized by fB � 0)? In this case, Alice is well
advised to play

M̂ � Û�p�2, p�2�, M̂ �
1
p

2

√
i 1

21 2i

!
, (8)

(the “miracle move” ), giving her at least reward r � 3
as payoff, since $A�M̂, Û�u, 0�� $ 3 for any u [ �0, p�,
leaving Bob with $B�M̂, Û�u, 0�� # 1�2 [see Fig. 4(a)].
Hence, if in an unfair game Alice can be sure that
Bob plays Û�u, 0�, she may choose “always-M̂” as her
preferred strategy in an iterated game. This certainly
3079
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FIG. 4. Quantum versus classical strategies: (a) Alice’s payoff
as a function of u when Bob plays Û�u, 0� [Û�0, 0� � Ĉ and
Û�p, 0� � D̂] and Alice chooses Ĉ (solid line), D̂ (dotted
line), or M̂ (dashed line). (b) The expected payoff that Alice
can always attain in an unfair game as a function of the
entanglement parameter g.

outperforms tit-for-tat, but one must keep in mind that
the assumed asymmetry is essential for this argument.

It is moreover interesting to investigate how Alice’s
advantage in an unfair game depends on the degree
of entanglement of the initial state jc0�. The minimal
expected payoff m that Alice can always attain by
choosing an appropriate strategy UA is given by

m � max
ÛA[S

min
ÛB�Û�u,0�

$A�ÛA, ÛB� ; (9)

Alice will not settle for anything less than this quan-
tity. By considering m a function of the entanglement
parameter g [ �0, p�2�, it is clear that m�0� � 1 (since
in this case the dominant strategy D̂ is the optimal choice)
while for maximal entanglement we find m�p�2� � 3
which is achieved by playing M̂. Figure 4(b) shows m
as a function of the entanglement parameter g. We ob-
serve that m is in fact a monotone increasing function
of g, and the maximal advantage is only accessible for
maximal entanglement. Furthermore, Alice should de-
viate from the strategy D̂ if, and only if, the degree
of entanglement exceeds a certain threshold value gth �
arcsin�1�

p
5 � � 0.464. The observed threshold behavior

is in fact reminiscent of a first-order phase transition in
Alice’s optimal strategy: At the threshold she should dis-
continuously change her strategy from D̂ to Q̂.

In summary, we have demonstrated that novel features
emerge if classical games such as the Prisoners’ Dilemma
are extended into the quantum domain. We have intro-
3080
duced a correspondence principle which guarantees that
the performance of a classical game and its quantum ex-
tension can be compared in an unbiased manner. Very
much as in quantum cryptography and computation, we
have found superior performance of the quantum strate-
gies if entanglement is present.
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the DFG.
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