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Multichain Mean-Field Theory of Quasi-One-Dimensional Quantum Spin Systems
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A multichain mean-field theory is developed and applied to a two-dimensional system of weakly
coupled S � 1�2 Heisenberg chains. The environment of a chain C0 is modeled by a number of
neighboring chains Cd, d � 61, . . . , 6n, with the edge chains C6n coupled to a staggered field. Using
a quantum Monte Carlo method, the effective �2n 1 1�-chain Hamiltonian is solved self-consistently
for n up to 4. The results are compared with simulation results for the original Hamiltonian on
large rectangular lattices. Both methods show that the staggered magnetization M for small interchain
couplings a behaves as M �

p
a enhanced by a multiplicative logarithmic correction.

PACS numbers: 75.10.Jm, 75.40.Cx, 75.40.Mg
Quasi-one-dimensional (quasi-1D) quantum spin sys-
tems have become an important field of study in solid
state physics. Many unusual, theoretically predicted
properties of 1D systems have been observed in real
materials. For example, the gapless two-spinon spectrum
[1] of the S � 1�2 Heisenberg chain has been observed
in neutron scattering experiments on KCuF3 [2], and
the Haldane gap predicted for integer S [3] has been
detected, e.g., in the S � 1 compound CsNiCl3 [4].
Quantum critical scaling [5] has been observed in the
NMR relaxation rates of the S � 1�2 system Sr2CuO3
[6], possibly even including anticipated [5,7] logarithmic
corrections [8]. In spite of the success of strictly 1D
models for these and many other quasi-1D magnetic ma-
terials, interchain couplings can be important as well. A
single isotropic chain cannot order, not even at T � 0,
whereas a transition to a Néel ordered state is often
observed at low temperature; KCuF3 and Sr2CuO3 both
order at TN � 5 K. Interchain couplings also change
qualitatively the nature of the low-lying excitations and
lead to interesting dimensional crossover phenomena.

One way to take into account interchain couplings J� in
a quasi-1D system with long-range order is to model the
environment of a single chain C0 by a staggered magnetic
field [9–12]. The effective 1D system can be solved
numerically on small lattices [10,12], or using analytical
techniques [11]. In this Letter, the mean-field approach
is extended to include also a number of neighboring
chains Cd to which C0 is coupled. In two dimensions
d � 61, . . . , 6n. A staggered field is coupled to the
edge chains C6n, to model their long-range ordered
environment. Fluctuations neglected in the environment
of Cd are approximated by a modification of their
intrachain interactions, in such a way that self-consistency
is achieved in the induced staggered magnetizations on C0
and Cd. The effective (2n 1 1)-chain Hamiltonian can be
solved using numerical methods, which typically perform
much better for a few coupled chains than for 2D or 3D
lattices.
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Here these ideas will be applied to a system of antifer-
romagnetic Heisenberg chains, with the Hamiltonian

H � J
X

i,j

Si,j ? Si11,j 1 J�

X

i,j

Si,j ? Si,j11 , (1)

where Si,j denotes a spin-1�2 operator at site i of chain
j. The focus will be on the dependence of the T � 0
staggered magnetization M � �Sz

i,j� �21�i1j on the
coupling constant ratio a � J��J. The question of
whether or not long-range order �M . 0� develops for
arbitrarily small a . 0 has been the subject of numerous
studies. Conventional spin-wave theory predicts a finite
critical value ac below which M � 0 [10,13], but RPA
[14] gives ac � 0. Some self-consistent calculations pre-
dict ac � 0 [15], whereas others have given ac as high as
0.2 [16]. Renormalization group analyses of the interchain
interactions are associated with subtleties [17,18], and
completely conclusive results have not been presented;
however, ac � 0 appears most plausible [18,19]. An
analytical treatment of the single-chain mean-field theory
gave the behavior M �

p
a for small a [11,18]. Numer-

ically, M has been calculated using exact diagonalization
[13,16] and series expansion techniques [17], the former
indicating ac � 0.1 0.2, and the latter giving an upper
bound ac & 0.02. Numerical calculations have in general
been hampered by convergence problems and difficult
extrapolations for small a. Here multichain mean-field
calculations will be complemented by large-scale quantum
Monte Carlo simulations of the original 2D Hamiltonian
(1). It will be shown that quadratic (L 3 L) lattices are
not suitable for extrapolations to the thermodynamic limit
when a ø 1, due to unusual, nonmonotonic finite-size
effects. Using rectangular lattices with aspect ratios
Lx�Ly as large as 16, it was, however, possible to study
systems with a as low as 0.02. Both the mean-field
calculations and the 2D simulations indicate that M
vanishes as a ! 0 slower than

p
a, due to a logarithmic

correction to this form.
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In the conventional single-chain mean-field treatment
of the Hamiltonian (1) [9–11], the coupling of a chain
j to its nearest neighbors j 6 1 is approximated by
J�

P
i Sz

i,j��Sz
i,j21� 1 �Sz

i,j11�	. In a Néel state �Sz
i,j� �

�21�i1jM, and one obtains an effective 1D Hamiltonian,

H1 � J
X

i

Si ? Si11 2 h
X

i

�21�iSz
i , (2)

with the self-consistency condition h � 2J�M which
directly relates M�h� to M�J�� of the 2D system.

The idea of the multichain mean-field theory is to
model the environment of a chain C0 by its first few
neighbor chains Cd, d � 61, . . . , 6n, with only the edge
chains C6n coupled to a staggered field. This induces
a staggered magnetization in all chains. The dynamic
environment for C0 provided by the Cd chains should be
considerably more realistic than just the static staggered
field of the single-chain theory. If C0 and Cd are identical
chains, it is not possible to obtain a self-consistent
description, however. The staggered magnetization will
be largest at the edges and decrease towards the center,
due to the neglected quantum fluctuations at the edges.
These fluctuations can be approximated by a modification
of the intrachain interactions of Cd. There are clearly
many possible ways of doing this, and the optimum way
that would best mimic the presence of an infinite half-
plane of other chains is not obvious. One requirement is
that the additional interactions have to be invariant under
spin rotations in the xy plane [since the field breaks the
O�3� symmetry, an O�2� symmetric effective interaction
in Cd is permissible]. Here the simplest interaction
satisfying this requirement will be considered; namely,
the xy part of the coupling is given a strength J

xy
d �

J�1 1 ljdj� different from Jz
d � J. Increasing ljdj . 0

increases the quantum fluctuations. The �2n 1 1�-chain
effective Hamiltonian is then

Hn � J
LX

i�1

nX

j�2n

Si,j ? Si11,j 1 J�

LX

i�1

n21X

j�2n

Si,j ? Si,j11

1

LX

i�1

6nX

d�61

ljdj�Sx
i,dSx

i11,d 1 S
y
i,dS

y
i11,d�

1 h
LX

i�1

�21�i �Sz
i,2n 1 Sz

i,n� . (3)

There are n 1 1 self-consistency conditions,

M 
 M0 � M1 �, . . . , � Mn � h�J� . (4)

Since the environment of a chain Ck becomes more
similar to that of the real 2D system the closer it is to
the center �k � 0� of the effective 2n 1 1 chain system,
the self-consistent parameters can be expected to satisfy
0 , l1 , · · · , ln. For a given a, the magnetization
(as well as other properties) should converge to its correct
value as n, L ! `. Therefore, the details of the intrachain
interactions used to achieve self-consistency can be seen
to be unimportant; they will affect only the rate of
convergence with increasing n.
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Here quantum Monte Carlo results for the cases n �
1, 2, 3, and 4 will be presented. In addition, results will be
shown for the conventional single-chain effective Hamil-
tonian (2), which corresponds to n � 0. This 1D Hamil-
tonian has been studied by Schulz via a mapping to a
solvable fermion model in the continuum limit [11], with
the result M � 0.719

p
a for the 2D system. The mapping

has not been demonstrated rigorously, however, and the
above form of M can furthermore be valid only for small
a. Numerical calculations have previously been carried
out for L # 10 [10], which is not sufficient for addressing
the behavior for a ø 1 in the thermodynamic limit.

Before presenting the mean-field results, quantum
Monte Carlo calculations for the full 2D Hamiltonian
(1) will be discussed. For the spatially isotropic system
(a � 1), very accurate results for M have previously [20]
been obtained using ground state results for the staggered
structure factor,

S�p , p� �
1
N

NX

i�1

NX

j�1

�Sz
i Sz

j � �21��xi2xj1yi2yj�. (5)

Accounting for rotational averaging, the sublattice mag-
netization is given by

M2 � 3S�p , p��N �N ! `� . (6)

Here this quantity will be extrapolated to infinite size
for a , 1. Using the stochastic series expansion method
with an efficient cluster update [21], systems with several
thousand spins were studied. Inverse temperatures b �
J�T as high as 2048 were used in order to obtain results
free of temperature effects.

For a � 1, the leading finite-size correction to M2 as
defined in Eq. (6) is positive and �1�

p
N [20]. This can

be expected also for 0 , a , 1 if the system is ordered.
Figure 1 shows results for a � 0.05 on L 3 L lattices
with L up to 40. The results extrapolate to M . 0, but
subleading corrections to the linear behavior are clearly
large. Previously, results for smaller L were used as
evidence that M vanishes below a critical value ac �
0.1 0.2 [13,16]. Results for rectangular lattices with
different aspect ratios R � Lx�Ly reveal a considerable
dependence on R, as also shown in Fig. 1. For R � 8, the
expected linear behavior can be seen clearly, and for R �
4 there is a crossover to this behavior for large systems.
For R � 2 there is a clear minimum, and the R � 1
results also suggest one. In the two latter cases the finite-
size behavior is hence nonmonotonic, and there has to be a
maximum for even larger systems before the asymptotic,
linear (with positive slope) approach to the infinite-size
value, which for a � 0.05 is S�p , p��N � 0.0056 (from
an extrapolation of the R � 8 data).

The nonmonotonicity can be understood as resulting
from a crossover from 1D to 2D behavior. A chain
of length Lx has an excitation gap D�Lx� � 1�Lx . If
this gap is larger than the effective energy scale of the
coupling of the chains, i.e., the spin-stiffness r

y
s , then the

system essentially behaves as a system of 1D chains, with
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FIG. 1. Quantum Monte Carlo results for the staggered
structure factor on rectangular lattices with different aspect
ratios and a � 0.05. The behavior for an L 3 L lattice with
a � 0 (independent 1D chains) is also shown. Statistical errors
are much smaller than the symbols.

exponentially damped correlations between the chains. A
crossover to 2D behavior can be expected when D�Lx� �
ry

s , which occurs for smaller system sizes N � LxLy when
the aspect ratio R is large, in agreement with the results in
Fig. 1. When a ø 1 (and therefore ry

s ø 1), quadratic
lattices therefore have to be very large for extrapolations
to infinite size to be meaningful. Instead, rectangular
lattices with R increasing with decreasing a should be
used. Using aspect ratios as large as R � 16, the sublattice
magnetization was calculated for a as small as 0.02.
Below, the results will be compared with the single- and
multichain mean-field theories.

In the single-chain theory the magnetization curve
M�J�� is directly obtained from a calculation of M�h�
for the Hamiltonian (2). The effective model (3) depends
explicitly on J�, however, and for each J� a search
for the self-consistent values h, l1, . . . , ln is required.
With the Monte Carlo method used [21], the derivatives
≠Mj�≠h and ≠Mj�≠lk can also be calculated. Using
these, an iterative scheme, where

h�m 1 1� � h�m� 1 Dh�m� ,

lk�m 1 1� � lk�m� 1 Dlk �m� ,
(7)

can be employed, starting from estimated values h�0�
and lk�0�. The self-consistency conditions (4) give the
corrections Dh�m� and Dlk �m� as the solution of n 1 1
coupled equations, e.g., for n � 1,
Dh�≠M0�≠h 2 ≠M1�≠h� 1 Dl1 �≠M0�≠l1 2 ≠M1�≠l1� � M1 2 M0 ,

Dh�≠M0�≠h 1 ≠M1�≠h 2 2�J�� 1 Dl1�≠M0�≠l1 1 ≠M1�≠l1� � 2h�J� 2 M1 2 M0 .
(8)
Self-consistency is typically achieved this way in as few
as two or three iterations.

For a finite system, the self-consistent M vanishes below
a critical value ac�L� which decreases with increasing L.
In order to study the behavior for small a very large L have
to be used. The largest sizes used here were L � 1024 for
n � 0, 512 for n � 1, 2, and 256 for n � 3, 4. Inverse
temperatures b � J�T as high as 2L were used in order
to completely project out the ground state.

All results for M, including those for the original 2D
Hamiltonian (1) extrapolated to infinite size, are shown
divided by

p
a in Fig. 2. The behavior predicted by

Schulz [11] using a mapping of the n � 0 mean-field
theory to a solvable continuum model should then be
a constant. The numerical results for n � 0 do not
agree with this; instead M0�

p
a appears to diverge as

a ! 0. The behavior for a & 0.4 is closely reproduced
by the form M0 � A0

p
a �1 1 ba� lng�a�a�, with g �

1�3, A0 � 0.53, a � 1.3, and b � 0.1. This result shows
that the mapping of Eq. (2) to the continuum model
is not exact. A reason for this could be the presence
of marginally irrelevant operators, which are known to
lead to logarithmic corrections to physical observables
in the case h � 0 [22]. The results for higher n also
show a similar divergent behavior, but with the available
computer resources it was not possible to extend the
calculations to as small a as for n � 0. The above
logarithmic form fits quite well also all the multichain
results, with only the overall factors An adjusted. This is a
strong indication that the logarithmic correction survives
in the 2D limit (n ! `). The curves indeed approach
the results obtained using finite-size extrapolations for
rectangular 2D lattices, confirming that the multichain
mean-field theory converges correctly. Remarkably, the
same expression that describes all the mean-field data also
fits the 2D results, with the amplitude A2D � 0.39.

The self-consistent values of the xy-anisotropy parame-
ters are graphed in Fig. 3 for n � 1, 2, 3. For n . 1, the
anisotropy is always largest at the edges, as expected, and
rapidly decreases as the center chain is approached. The
behavior for a ! 0 suggests a very slow asymptotic de-
cay to zero—again an indication of log corrections.

To conclude, both the multichain mean-field theory
and calculations for the original Hamiltonian strongly
support a critical coupling ac � 0, and a staggered
magnetization that for small interchain couplings behaves
as M �

p
a enhanced by a logarithmic correction. In

the conventional single-chain mean-field theory (n � 0),
all interchain quantum fluctuations are neglected. The
2D quantum fluctuations develop systematically in the
multichain theory as n is increased. For a ø 1,
the functional form of the sublattice magnetization is
the same for all n considered (n � 0 4), indicating
that the interchain quantum fluctuations affect only the
overall magnitude of M. Hence even the conventional
3071
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FIG. 2. Self-consistent staggered magnetization vs interchain
coupling in the single-chain mean-field theory (n � 0) and
multichain mean-field theories with n � 1 4. Statistical errors
are at most comparable to the symbol sizes. Monte Carlo
results for the full 2D Hamiltonian are shown with estimated
error bars. The dashed line is the analytical n � 0 result
[11]. The solid curves are of the form Mn�

p
a � An�1 1

ba� lng�a�a�, with b � 0.095, a � 1.3, and g � 1�3 in all
cases. These parameters, and A0 � 0.529, were chosen to fit
the n � 0 data. Only the amplitudes An were subsequently
adjusted to fit the other data sets.

single-chain theory gives the correct functional form
for M, although the magnitude is overestimated by a
factor �1.35. The previous analytical treatment of the
single-chain theory [11] misses the log correction.

For the model considered here, it was possible to
explicitly test the multichain mean-field theory against
large-scale quantum Monte Carlo results. In general, this
would not be possible, e.g., for systems with frustrated
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FIG. 3. Self-consistent anisotropy parameters vs interchain
coupling for n � 1, 2, 3. All lk , k � 1, . . . , n, for given n are
shown using the same symbols, and in all cases l1 , · · · , ln.
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interactions where Monte Carlo simulations suffer from
sign problems. The density matrix renormalization group
method [23] could be used to study the effective multi-
chain models in such cases.

I thank D. K. Campbell and H. J. Schulz for stimulating
discussions and I. Affleck for pointing out Ref. [24]. This
work was supported by the NSF under Grant No. DMR-
97-12765. Some of the numerical calculations were
carried out at the NCSA.

Note added.—After completing this work, the author
became aware of a recent bosonization calculation [24]
predicting a log correction with exponent g � 1�2 for M
in the single-chain mean-field theory.
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