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Hall Noise and Transverse Freezing in Driven Vortex Lattices
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We study driven vortex lattices in superconducting thin films. Above the critical force Fc we find two
dynamical phase transitions at Fp and Ft , which could be observed in simultaneous noise measurements
of the longitudinal and Hall voltage. At Fp there is a transition from plastic flow to smectic flow, where
the voltage noise is isotropic (Hall noise � longitudinal noise) and there is a peak in the differential
resistance. At Ft there is a sharp transition to a frozen transverse solid, where the Hall noise falls
abruptly and vortex motion is localized in the transverse direction.

PACS numbers: 74.60.Ge, 05.70.Fh, 74.40.+k
The study of the collective motion of vortex lattices
in superconductors has brought new concepts into the
nonequilibrium statistical physics of driven disordered
media [1–18]. The prediction [1] of a dynamical phase
transition upon increasing drive, from a fluidlike plas-
tic flow regime [2–4] to a coherently moving solid [1],
has motivated an outburst of recent theoretical [5–7], ex-
perimental [8–11], and simulation [12–18] work. The
relevant physics of the high velocity driven phase is
controlled by the transverse displacements (in the direc-
tion perpendicular to the driving force) [5], leading to a
new class of driven systems characterized by anisotropic
spatial structureswith transverse periodicity [5–7]. Re-
cently, these moving anisotropic vortex structures have
been observed experimentally by Pardo et al. [11], and
their different features have been studied in 2D [12–16]
and 3D [17,18] simulations. It was proposed that tem-
poral correlations may be a useful characterization of
nonequilibrium driven systems [19]. In fact, we will show
here that a good insight into the moving phases can be
obtained from studying the anisotropic temporal fluctua-
tions. We find two dynamical phase transitions which
could be observed experimentally by measuring voltage
noise [20,21], both in the longitudinal and transversal
directions.

The equation of motion of a vortex in position ri is
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dri
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where rij � jri 2 rjj is the distance between vortices
i, j, rip � jri 2 rpj is the distance between the vortex
i and a pinning site at rp , h � F0Hc2d

c2rn
is the Bardeen-

Stephen friction, and F �
dF0

c J 3 z is the driving force
due to an applied current J. A two-dimensional super-
conductor is realized in thin films of thickness d, where
d ø l, which have an effective penetration depth L �
2l2�d. Since L is of the order of the sample size (L �
200 mm in [9]), the vortex-vortex interaction is logarith-
0031-9007�99�83(15)�3061(4)$15.00
mic: Uy�r� � 2Ay ln�r�L�, with Ay � F
2
0�8pL [3,13].

The vortices interact with a random uniform distribution
of attractive pinning centers with Up�r� � 2Ape2�r�j�2

with j being the coherence length. We normalize length
scales by j, energy scales by Ay , and time is normal-
ized by t � hj2�Ay . We consider Ny vortices and Np
pinning centers in a rectangular box of size Lx 3 Ly ,
and the normalized vortex density is ny � Nyj2�LxLy �
Bj2�F0. Moving vortices induce a total electric field
E �

B
c v 3 z, with v �

1
Ny

P
i vi .

We study the dynamical regimes in the velocity-
force (voltage-current) characteristics at T � 0, solving
Eq. (1) for increasing values of F � Fy . We consider
a constant vortex density ny � 0.12 in a box with
Lx�Ly �

p
3�2, and Ny � 64, 144, 196, 256, 400, and

784 (we show results for Ny � 400). We take a pinning
strength of Ap�Ay � 0.2 with a density of pinning
centers np � 0.24. We use periodic boundary conditions,
and the periodic long-range logarithmic interaction is
evaluated with an exact and fast converging sum [22].
The equations are integrated with a time step of Dt �
0.01t, and averages are evaluated in 32 768 integration
steps after 2000 iterations for equilibration (when the total
energy reaches a stationary value). Each simulation is
started at F � 0 with an ordered triangular lattice and by
slowly increasing the force in steps of DF � 0.05 up to
values as high as F � 8.

We start by looking at the vortex trajectories and their
translational order in the steady state phases as was done
in Refs. [12–18]. In Figs. 1(a)–1(c) we show the vortex
trajectories �ri�t�� for typical values of F by plotting all
the positions of the vortices for all the time iteration steps.
We also study the time-averaged structure factor S�k� �
�j 1
Ny

P
i exp�ik ? ri�t�	j2
, which is shown in Figs. 1(d)–

1(f). In Fig. 2(a) we plot the average vortex velocity
V � �Vy�t�
 � � 1

Ny

P
i
dyi
dt 
, in the direction of the force as

a function of F and its corresponding derivative dV�dF.
(V � E�rfJ0 with rf the flux flow resistivity and
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FIG. 1. Vortex trajectories: (a) F � 0.5, (b) F � 2.5, and
(c) F � 7. Surface intensity plot of the averaged structure
factor S�k�: (d) F � 0.5, (e) F � 2.5, and (f ) F � 7.

J0 � cAy�djF0; therefore, dV�dF is proportional to the
differential resistivity dV�dF � r

21
f dE�dJ). Below a

critical force Fc � 0.25 all the vortices are pinned and
there is no motion, V � 0. Above Fc, we distinguish
among three different dynamical regimes.

(i) Plastic flow: Fc , F , Fp .—At Fc, vortices start
to move in a few filamentary channels, as was also seen
in [3]. A typical situation is shown in Fig. 1(a), where a
fraction of the vortices are moving in an intricate network
of channels. As the force is increased a higher fraction of
vortices is moving. In this regime, vortices can move in
the transverse direction (perpendicular to F) through the
tortuous structure of channels [4]. We see in Fig. 1(d)
that S�k� only has the central peak showing the absence
of ordering in this plastic flow regime [2–4].

(ii) Smectic flow: Fp , F , Ft .—We observe a peak
in the differential resistance at a characteristic force
Fp � 1.3. At F � Fp we see that all the vortices are
moving in a seemingly isotropic channel network with
maximum interconnectivity. In other simulations the peak
in the differential resistance was found to coincide with
a maximum in the number of defects [15] and with
the onset of orientational order [13]. Also, the value
of Fp was taken in the experiment of Hellerqvist et al.
[9] as an indication of a dynamical phase transition.
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FIG. 2. (a) Velocity-force curve (voltage-current characteris-
tics), left scale, white points. dV�dF curve (differential re-
sistance), right scale, black points. (b) Intensity of the Bragg
peaks. For smectic ordering S�G1�, Ky � 0: black points. For
longitudinal ordering S�G2,3�, Ky fi 0: white points. (c) Finite
size exponent sG �S�G1� � N2sG

y 	.

In fact, we find that above Fp a new dynamic regime
sets in. In this case, as we show in Fig. 1(b), all the
vortices are moving in trajectories that are mostly parallel
to the force, forming “elastic channels.” Two small
Bragg peaks appear in the structure factor along the
Ky � 0 axis, as seen in Fig. 1(e), which correspond to
G1 � �62p�a0, 0�. This is consistent with the onset of
“smectic” ordering [6,12] in the transverse direction with
elastic channels separated by a distance �a0 � n21�2

y . In
this regime the transverse motion consists of vortex jumps
from one channel to another, resembling “thermally”
activated transitions induced by local chaos. The rate
of these transitions decreases with increasing force, and
they correspond to the permeation modes discussed in [6].
In Fig. 2(b) we plot the magnitude of the Bragg peaks
at G1, Ss � S�G1�, corresponding to smectic ordering
�Ky � 0�, and the other neighboring peaks at G2 �
62p�a0�1�2,

p
3�2� and G3 � 62p�a0�21�2,

p
3�2�,

Sl � �S�G2� 1 S�G3�	�2�, corresponding to longitudinal
ordering �Ky fi 0�. We see that above Fp the intensity of
the smectic peak Ss starts to grow and Ss ¿ Sl , while
below Fp the spatial structure is isotropic, Ss � Sl ø
1. The Bragg peak heights depend on system size as
S�G� � N2sG

y , where sG � 0 means long-range order,
0 , sG , 1 means quasi-long-range order (QLRO), and
sG � 1 means short-range order. In Fig. 2(c) we show
the corresponding results for the smectic peak Ss � S�G1�
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for sizes Ny � 256, 400, and 784. We see that sG * 1
in this regime: there is only short-range smectic order,
thus this phase corresponds to a liquid. In this sense
the transition at Fp is a dynamic transition in the flow,
as found in [16] for strong disorder �np � 1�. When
approaching Ft (see below) we see a precursor of QLRO
�sg , 1� but with strong fluctuations.

(iii) Frozen transverse solid: F . Ft .—At a new char-
acteristic force Ft , the jumps between channels suddenly
stop and vortex motion becomes frozen in the direction
perpendicular to F. An example of F . Ft is shown
in Fig. 1(c) where we see well-defined elastic channels
parallel to F. The corresponding structure factor is in
Fig. 1(e), where new peaks appear in S�k� in directions
with Ky fi 0, such as G2, G3, showing that there is some
longitudinal ordering between the channels. These ex-
tra peaks are smaller than the smectic peaks, and S�k� is
very anisotropic. We note in Fig. 2(a) that Ft is the point
where the noisy behavior in dV�dF ceases. A similar
criterion was used by Bhattacharya and Higgins to define
their dynamical phase diagram [8]. In Fig. 2(b) we see
that in Ft there is an increase in the longitudinal ordering
Sl , and both Ss and Sl tend to saturate at an almost con-
stant value for F ¿ Ft . In Fig. 2(c) we find that there is
smectic QLRO [5,6,12] with a value of 0.5 , sG , 0.7.
However, we were not able to obtain a reliable finite size
analysis for the longitudinal peaks since they have large
fluctuations from size to size. Also, we find hysteresis in
Ss around Ft when decreasing F.

A better understanding of the dynamical transitions can
be obtained from studying the temporal behavior of the
system in both directions. It has been observed experi-
mentally that the longitudinal voltage can show low fre-
quency noise [20,21]. This voltage noise reaches a very
large value above the critical current, which has been at-
tributed to plastic flow [21], and then the noise decreases
for large current. In addition, even when the total dc
transverse voltage �Vx
 � � 1

Ny

P
i
dxi
dt 
 is zero, it can also

have fluctuations and noise [23]. In fact, it is easy to
understand that this Hall noise will be closely related to
the wandering and wiggling of the plastic flow channels
and to the jumps between elastic channels in the smec-
tic phase. We have calculated the power spectrum of
both the longitudinal voltage, Sy�f� �

1
T j

RT
0 dt �Vy�t� 2

V 	 exp�i2pft�j2, and the transverse voltage, Sx�f� �
1
T j

RT
0 dt Vx�t� exp�i2pft�j2. The low frequency noise is

defined as Px,y � limf!0 Sx,y�f�. In Fig. 3(a) we show
the values of the longitudinal noise Py and the Hall noise
Px as a function of the force (Px,y were approximated
from the average of the ten lowest frequencies). We see
that, near the critical force, the longitudinal noise is large
while the Hall noise is 1 order of magnitude smaller. In
this regime of plastic flow the noise is dominated by fluc-
tuations in the direction of motion and by channel tortu-
osity [4], and since there are few channels the Hall noise
FIG. 3. (a) Low frequency voltage noise vs F. Longitudinal
voltage noise Py , black points. Hall noise Px , white points.
(b) Diffusion coefficient for transversal motion Dx . The inset
shows the average transverse quadratic displacement �D2x
 in
the frozen phase, F . Ft . (c) Diffusion exponents zx (black
dots) and zy (white dots) defined from ��x̃�t� 2 x̃�0�	2
 � tzx ,
�� ỹ�t� 2 ỹ�0�	2
 � tzy . The inset shows a plot of Ay defined
from a fit �� ỹ�t� 2 ỹ�0�	2
 � Ayt2 for F . Ft .

is small. When the number of channels increases the vor-
tices wander more in the x direction and the Hall noise
increases. At Fp the voltage noise becomes isotropic,
Px � Py . This is the point where we have seen the
highest interconnection in the channel network. The co-
incidence of isotropic noise, onset of short-range smec-
tic order, and peak in differential resistance suggest that
there is a dynamic transition at Fp , although a crossover
between two flow regimes cannot be discarded. Above
Fp , the onset of elastic channels and smectic ordering
reduces the longitudinal noise, while the Hall noise re-
mains large due to the “activated” jumps between elas-
tic channels. At Ft the Hall noise falls abruptly, nearly
2 orders of magnitude. This corresponds to a freezing
transition of vortex motion in the transverse direction.
Above Ft there are no more vortex jumps between elas-
tic channels. The low frequency noise can be closely re-
lated to diffusive motion for large times. We analyze the
average quadratic displacements of vortices in both direc-
tions from their center-of-mass position ���Xcm�t�,Ycm�t����
as a function of time. We define wx�t� �

1
Ny

P
i�x̃i�t� 2

x̃i�0�	2 and wy�t� � 1
Ny

P
i� ỹi�t� 2 ỹi�0�	2, where x̃i�t� �

xi�t� 2 Xcm�t�, ỹi�t� � yi�t� 2 Ycm�t�. We observe that
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the vortex motion for Fc , F , Ft is diffusive in the
transverse direction, wx�t� � Dxt. In Fig. 3(b) we show
the behavior of the transverse diffusion coefficient Dx . It
closely follows the behavior of the Hall noise, Dx ~ Px .
The transverse diffusion is maximum at the peak in the
differential resistance Fp and it has an abrupt jump to
zero at Ft , indicating the transverse freezing transition. It
is interesting to note that melting transitions also show a
jump in the diffusion coefficient. Above Ft , the trans-
verse wandering is independent of time since vortex mo-
tion is localized in the x direction: wx�t� � �D2x
. In
the inset of Fig. 3(b) we show �D2x
 vs F for F . Ft .
We find that �D2x
 � 0.02a2 at Ft , consistent with a
Lindemann criterion for melting [7]. Since the diffusion
coefficient of free Brownian particles is D ~ T (and it
is a monotonous function of T in a liquid) we can in-
terpret Dx as a rough measure of an “effective tempera-
ture” Teff below Ft . Similarly, above Ft we can think that
�D2x
 � Teff. Indeed, we obtain �D2x
 � 1�F, which is
consistent with Teff ~ 1�V [1,7].

The long-time behavior is better understood by study-
ing the diffusion exponents wx�t� � tzx and wy�t� � tzy .
In Fig. 3(c) we show the behavior of zx,y . We see that,
for Fc , F , Ft , zx � 1 corresponding to normal dif-
fusion, while for F . Ft , zx � 0 corresponding to the
freezing of transverse motion. More interestingly, the
motion in the longitudinal direction is always superdif-
fusive, zy . 1. Above Ft , in the frozen phase, the lon-
gitudinal fluctuations become ballistic, zy � 2. Since the
vortex positions are localized in the x direction, we see
that wy�t� � ��y�t� 2 y�0�	2
 � Ayt2, with Ay � �D2yy

the dispersion of the average velocities of the elastic
channels. In the inset of Fig. 3(c) we find that Ay de-
creases exponentially with the force Ay � exp�2aF�.
[This suggests a “thermal” distribution of channel veloci-
ties; since Teff � 1�F, then �D2yy
 � exp�2a0�Teff�.]
In the smectic flow region an exponent 1 , zy , 2 can
be explained by assuming that vortices move most of the
time in the elastic channels and occasionally have diffu-
sive jumps between channels in the transverse direction.

In conclusion, we have obtained evidence of two
dynamical phase transitions which can be verified experi-
mentally by measurements of voltage noise and Hall
noise. The first transition at Fp is the point of isotropic
noise and maximum transverse diffusion (i.e., maximum
effective temperature) and corresponds to the observed
peak in the differential resistance. The second transition
at Ft is a freezing transition in the transverse direction,
where the transverse diffusion vanishes abruptly and the
Hall noise drops many orders of magnitude.
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