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Theory of Vortex Excitation Imaging via an NMR Relaxation Measurement
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The temperature dependence of the site-dependent nuclear spin relaxation time T1 around vortices is
studied in s-wave and d-wave superconductors. Reflecting low-energy electronic excitations associated
with the vortex core, temperature dependences deviate from those of the zero-field case, and T1 becomes
faster when approaching the vortex core. In the core region, T21

1 has a new peak below Tc. The NMR
study by the resonance field dependence may be a new method to prove the spatial resolved vortex core
structure in various superconductors.

PACS numbers: 74.60.Ec, 74.25.Jb, 76.60.Pc
Much attention has been focused on vortex physics both
of high-Tc cuprates and of conventional superconductors.
Among various experimental methods, the nuclear mag-
netic resonance (NMR) experiments [1] have been pro-
viding vital data in distinguishing between s-wave and
d-wave pairing symmetries via temperature (T ) depen-
dence of the nuclear spin relaxation time T1, which re-
flects low-lying excitations in the superconducting state.
The power law T21

1 ~ T3�T5� behavior is taken as defini-
tive evidence for a line (point) node in the gap structure of
anisotropic superconductors. This conclusion comes from
a simple counting of the density of states (DOS) at the
Fermi level: N�v� ~ v�v3� for a line (point) node in a
bulk superconductor at zero field. However, actual NMR
experiments are performed under applied fields in a mixed
state. Then, the contribution of the vortex core is included
in their data [2,3]. Usually, T1 is measured by selecting
the resonance frequency at a most intensive signal in the
resonance spectrum. However, the resonance spectrum re-
flects information of internal magnetic field distribution of
the vortex lattice [4]. By choosing the resonance field, we
can specify the position to detect the NMR signal. The
signal at the maximum (minimum) cutoff comes from the
vortex center (the farthest) site. The signal at the loga-
rithmic singularity of the resonance field comes from the
saddle points of the field. By studying the position de-
pendence of T1 around vortices through the resonance fre-
quency dependence, we can clarify the detail of the vortex
contribution in the NMR experiments. It helps us in the
analysis of the standardized procedure extracting the gap
symmetry.

Low-lying excitation spectra around a vortex are not
fully understood both experimentally and theoretically.
The related problems are as follows. In the s-wave
superconductors, the effect of the quantized energy level
will appear in the quasiparticle state [5–7]. In the
d-wave case, the low-energy state around the vortex core
extends outside the core due to the node of the supercon-
ducting gap, and shows the

p
H-like DOS relation (H is

an applied field) [8–12]. We also need to estimate the
quasiparticle transfer between vortices (such as the path of
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the transfer and its amplitude) to study the de Haas–van
Alphen (dHvA) oscillation or transport phenomena in the
mixed state [9,13]. The excitation around the core plays
a fundamental role in determining physical properties of
superconductors. In high-Tc cuprates, the existence or
nonexistence of localized core excitations in the d-wave
pairing case is actively debated. Theoretical study sug-
gested the zero-energy peak in the d-wave case, instead
of the quantized energy level in the s-wave case [10–12].
On the contrary, the scanning tunneling spectroscopy
(STS) experiments reported quantized energy level with
large gap in YBCO [14], and surprisingly enough no peak
within the superconducting gap in BSCCO [15]. Part of
the reason for the debate is due to limited experimental
methods which directly probe the spatially resolved core
structure. So far, the STS was only a method to detect
it. A large number of thermodynamic or transport mea-
surements probe spatially averaged quantities. Here we
propose a novel spatially resolved means, that is, vortex
imaging to see electronic excitations associated with a
vortex core by using NMR, and demonstrate how the T
dependence of T1 is site sensitive. Through this analysis,
we are able to produce a spatial image of the low-lying
excitation spectrum around a core. A similar idea of
the NMR imaging is actually tested experimentally in
high-Tc materials by Curro’s group [16] and also in the
spin-Peierls system CuGeO3 by Horvatić [17].

The position dependence of the NMR signal in the
s-wave case was theoretically studied under some approxi-
mations [6,18]. Here, we calculate it microscopically from
the wave functions obtained by self-consistently solving
the Bogoliubov–de Gennes (BdG) equation for the ex-
tended Hubbard model in the s- and d-wave cases. The
eigenenergy Ea and the wave functions ua�ri�, ya�ri� at
i site are calculated by following the method of Ref. [11].
The BdG equation for the extended Hubbard model on the
two-dimensional square lattice is given by

X
j

0
B@

Ki,j Di,j

D�
i,j 2K�

i,j

1
CA

0
B@

ua�rj�

ya�rj�

1
CA � Ea

0
B@

ua�ri�

ya�ri�

1
CA , (1)
© 1999 The American Physical Society 3057



VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999
where Ki,j � 2ti,j exp�i p

f0

Rrj

ri
A�r� ? dr� 2 di,jm, Di,j �

di,jUDi,i 1
1
2Vi,jDi,j with the on-site interaction U, the

chemical potential m, and the flux quantum f0. The
transfer integral ti,j � t and the nearest neighbor (NN)
interaction Vi,j � V for the NN site pair ri and rj , and
otherwise ti,j � Vi,j � 0. The vector potential A�r� �
1
2H 3 r in the symmetric gauge. The self-consistent
condition for the pair potential is

Di,j � 2
1
2

X
a

ua�ri�y�
a�rj� tanh�Ea�2T � . (2)

The band filling factor �n� � 0.9 in our calculation.
We consider the square vortex lattice case where the

nearest neighbor vortex is located at the 45± direction
from the a axis. This vortex lattice configuration is
suggested for d-wave superconductors, or s-wave su-
perconductors with fourfold symmetric Fermi surface
[9,19,20]. The unit cell in our calculation is the square
area of N2

r sites where two vortices are included. Then,
H � 2f0��cNr�2 (c is the atomic lattice constant).
We consider the area of N2

k unit cells. By introducing
the quasimomentum of the magnetic Bloch state, k �
�2p�cNrNk� �lx , ly� �lx , ly � 1, . . . , Nk�, we set ua�r� �
ũa�r�eik?r , ya�r� � ỹa�r�eik?r . We solve Eq. (1) within
a unit cell under the given k. Then, a is labeled by k
and the eigenvalues obtained by this calculation within a
unit cell.

The periodic boundary condition is given by the
symmetry for the translation R � mu1 1 nu2 (m and
n are integers, u1 and u2 are unit vectors of the vortex
lattice), i.e., ũa�r 1 R� � ũa�r�eix�r,R��2, ỹa�r 1 R� �
ỹa�r�e2ix�r,R��2. Here, x�r, R� � 2

2p

f0
A�r� ? r 2

pmn 1
2p

f0
�H 3 r0� ? R in the symmetric gauge when

the vortex center is located at r0 1
1
2 �u1 1 u2�. The

on-site s-wave pair potential Ds�ri� � UDi,i . The
dx22y2-wave pair potential is given by

Dd�ri� � V �Dx̂,i 1 D2x̂,i 2 Dŷ,i 2 D2ŷ,i��4 (3)

with D6ê,i � Di,i6ê exp�i p

f0

R�ri1ri6ê��2
ri

A�r� ? dr�. The
phase factor [21] is needed to satisfy the translational
relation Dd�r� � Dd�r 1 R�eix�r,R�.

We construct the Green’s functions from Ea , ua�r�,
ya�r�, and calculate the spin-spin correlation function
x1,2�r, r0, iVn� [18]. Then, we obtain the nuclear spin
relaxation rate,

R�r,r0� � Imx1,2�r, r0, iVn ! V 1 ih���V�T �jV!0

� 2
X
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ua�r�u�
a0�r��ua�r0�u�

a0�r0� 1 ya�r0�y�
a0�r0��

3 pTf 0�Ea�d�Ea 2 Ea0� (4)

with the Fermi distribution function f�E�. We consider
the case r � r0 by assuming that the nuclear relaxation
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occurs locally such as in the Cu site of high-Tc cuprates.
Then, r-dependent relaxation time is given by T1�r� �
1�R�r, r�. In Eq. (4), we use d�x� � p21Im�x 2 ih�21

to consider the discrete energy level of the finite size
calculation. We typically use h � 0.01t. To understand
the behavior of T1�r�, we also consider the local density
of states (LDOS) given by

N�r, E� � 2
X
a

�jua�r�j2f 0�Ea 2 E�

1 jya�r�j2f 0�Ea 1 E�� . (5)

It corresponds to the differential tunnel conductance of
STS experiments.

As for the temperature dependence of Ds�r� and Dd�r�,
the vortex core radius shrinks with decreasing T by
the Kramer-Pesch effect [10,22]. However, the shrink
is saturated at a low temperature both in the s- and
d-wave cases. There, the structure of Ds�r� and Dd�r�
is almost independent of T . This is a quantum-limit
effect which occurs for T�Tc , D0�EF (EF is the Fermi
energy and D0 the superconducting gap at zero field.
In our calculation, D0�EF � 0.25 for d-wave, �0.125
for s-wave) [7]. We calculate the low temperature
behavior of T1�r� by using the saturated pair potential. At
higher temperature, we calculate T1�r� by using the self-
consistently obtained pair potential at each T .

Figure 1(a) shows the position of the sites (V, A, B,
C, S) where we calculate N�E, r� and T1�r�. First, we
see the LDOS around the vortex. The s-wave case
(U � 22.32t, V � 0) is shown in Fig. 1(b), and the
d-wave case (U � 0, V � 24.20t) is shown in Fig. 1(c).
In our calculation, Nr � 20 and Nk � 8. In N�E, r� at
the vortex center (the V site), the gap edge at D0 in the
zero-field case (dotted line U) is smeared, and low-energy
peaks of the vortex core state appear. In the s-wave case,
we see some peaks above the small gap D1 (�D

2
0�EF�.

It is due to the quantization of the energy level in the
s-wave case. In the d-wave case, the core state shows
zero-energy peak instead of the split peaks in the s-wave
case [11]. There is no small gap. The weight of the
low-energy states is decreased with going away from the
vortex center (V ! A ! B ! C). Far from the vortex,
N�E, r� is reduced to the DOS of the zero-field case. But,
small weight of the low-energy state extending from the
vortex core remains there. It is noted that the weight of
the low-energy state at the S site is larger than that of the B
site in the s-wave case, while the S site is farther from the
vortex center [see lines for the S and B sites in Fig. 1(b)].
It is due to the vortex lattice effect. The quasiparticle
transfer between vortices occurs along the line connecting
NN vortices (i.e., near the S site).

Next, we consider the T dependence of T1�r� at each
site in Fig. 1, which reflects the LDOS discussed above.
The NMR signal at the maximum cutoff of the resonance
spectrum as a function of applied field or probe frequency
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FIG. 1. The LDOS N�r, E� at sites V, A, B, C, S. (a) Position of the sites V, A, B, C, S in the square vortex lattice, where the
nearest neighbor vortex is located in the 45± direction from the a axis. The vortex center is shown by Ø. The solid lines show the
square atomic lattice. (b) N�r, E� in the s-wave case. (c) N�r, E� in the d-wave case. The LDOS for the S site is presented by
the dotted line with the solid line for the B site. The DOS at zero field is presented by the dotted line U with the solid line for the
V site.
comes from the vortex core at the V site. With going
away from the center (V ! A ! B ! C), the resonance
field is decreased. The signal at the minimum cutoff
comes from the C site. The logarithmic singularity of the
resonance field comes from the saddle point of the field at
the S site. Thus it is possible to perform the site-selective
T1�r� measurement by tuning the resonance frequency.

The s-wave case is shown in Fig. 2. We plot T1�r�21

vs T for each site in Fig. 2(a) and replot it as lnT1�r� vs
T21 in Fig. 2(b). We also calculate the zero-field case in
our formulation. At the zero field, T1 � eD0�T . Then, the
slope of the lnT1 vs T21 plot gives the superconducting
gap D0, as the line U in Fig. 2(b). In the presence of
vortices, T1 deviates from the relation eD0�T at low T due
to the low-energy excitation around the vortex core. This
deviation was reported in the experiments [2]. In our
results, reflecting the small gap D1 in the s-wave case,
T1 shows the slope D1 at low T in the lnT1 vs T21 plot
[see the V site in Fig. 1(b)] as seen in Fig. 2(b). That
is, T1 � eD1�T . With leaving the vortex center, since the
amplitude of the low-energy bound states is damped, the
weight of eD1�T gradually decreases. Then the crossover
temperature from eD0�T to eD1�T is lowered. It is noted

FIG. 2. Temperature dependence of T1�r� in the s-wave case
at the sites V, A, B, C, S assigned in Fig. 1(a). (a) T1�Tc��T1�T�
is plotted as a function of T�Tc. (b) lnT1�T �� lnT1�Tc� is
plotted as a function of Tc�T . Line U shows the zero-field
case. The line N is for the normal state at T . Tc.
that T1 is faster at the S site than that of the B site, while
the S site is farther from the vortex center. This nontrivial
result is due to the vortex lattice effect noted above.
We should also notice the behavior of the coherence
peak below Tc. As seen in Fig. 2(a), with approaching
the vortex center as C ! B, the coherence peak is
suppressed. But in the vortex core region (lines V and
A), a large new peak grows at intermediate temperatures.
This is because the LDOS at the vortex core has peaks at
low energy D1 instead of the singularity of DOS at D0.

As for the d-wave case, we plot T1�r�21 vs T in
Fig. 3(a) and replot it as a log-log plot in Fig. 3(b).
At zero field (line U), we see the power law relation
T21

1 � T3 of the d-wave case as expected. Note that
this can be seen only below T�Tc 	 0.1 in our case.
In the presence of vortices, T1�r�21 deviates from the
T3 relation and follows T1�r�21 � T at low temperature.
This deviation was reported in the experiments on high-Tc

cuprates [3]. The origin of the T -linear behavior, which
is attributed to residual density of states due to impurities
or defects, is the low-energy state around vortices in
our case. With approaching the vortex center, the T
region of the T -linear behavior is enlarged and it appears
from higher temperatures. As seen in Fig. 1(c) of the

FIG. 3. Temperature dependence of T1�r� in the d-wave case
at the sites V, A, B, C, S. (a) T1�Tc��T1�T� is plotted as a
function of T�Tc. (b) A log-log plot of (a). Line U shows the
zero-field case. The line N is for the normal state at T . Tc.
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d-wave case, the superconducting gap is buried by the
low-energy state around vortices without the small gap of
the order D

2
0�EF . Then, T21

1 � T at low temperature in
the d-wave case instead of the relation T1 � eD1�T in the
s-wave case. As seen in Fig. 3, T1�r�21 at the vortex
center (line V ) is very large compared with the zero-field
case (line U). It reflects the fact that the LDOS of the
low-energy state is larger than the DOS of the zero-field
case as seen in Fig. 1(c). This short relaxation may be the
evidence of the low-energy peak in the LDOS by the low-
energy core state. The coherence peak below Tc is taken
as a manifestation of the s-wave symmetry. In the d-wave
case, the coherence peak is absent. But in the vortex core
region, T21

1 has a peak below Tc even in the d-wave case.
We should be careful not to mistake this peak due to the
vortex core relaxation as the usual coherence peak in the
NMR experiment when identifying the gap symmetry.

With increasing external magnetic field, the relaxa-
tion is enhanced, because the vortex contribution is
increased and the amplitude of the low-energy state
extending outside the vortex core becomes large both
in the s-wave and d-wave cases, as coinciding qualita-
tively with the observation of an organic superconductor
k-�ET�2Cu�N�CN�2�Br by Mayaffre et al. [23]. The de-
tails of the field dependence belong to a future study.

Traditionally, the vortex contribution was considered as
the spin diffusion to the normal region of the vortex core
[3,6], and T1 is treated as the spatial average. However,
we can investigate the position dependence of T1�r�
around vortices through the resonance field dependence.
This is an advantage of NMR over other methods. We
should clarify the local mechanism of the relaxation (i.e.,
whether the relaxation occurs locally, or it is averaged by
the spin diffusion). It is noted that in the clean limit the
vortex core region is not a simple core filled by normal
state electrons [9]. There, the characteristic T dependence
is expected near the vortex core other than a simple
T -linear behavior, reflecting the rich structure of the low-
energy state around the vortex core. We expect that the
NMR imaging study just explained here will provide vital
information for the vortex core state in high-Tc cuprates.
As for the problem whether the quantization of the energy
levels occurs or not, T1 � eD1�T if the gap D1 (�D

2
0�EF)

is present in the excitation due to the quantization. If
this small gap is absent, T21

1 � T . As for the problem
whether the zero-energy peak exists or not in the core
state, the relaxation at the core becomes eminently faster
than that of the zero-field case (or that far from the vortex)
at low temperature, if the zero-energy peak exists in the
LDOS as suggested in the theoretical study. If the peak
structure is absent within D0 as reported in the STM
experiments on BSCCO, the relaxation is slow even at
the vortex core as in the zero-field superconducting case.

We proposed the study of the low-energy excitation
imaging around vortices via an NMR relaxation. It may
3060
provide valuable information for the understanding of the
vortex physics in high-Tc superconductors as well as in
the conventional superconductors.

We thank M. Horvatić, K. Ishida, and Y. Iwamoto for
useful information on NMR experiments.
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