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Large Predicted Self-Field Critical Current Enhancements In Superconducting Strips
Using Magnetic Screens
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A transport current distribution over a wide superconducting sheet is shown to strongly change in the
presence of bulk magnetic screens of a soft magnet with a high permeability. Depending on the geome-
try, the effect may drastically suppress or protect the Meissner state of the sheet through the enhance-
ment or suppression of the edge barrier critical current. The total transport current in the magnetically
screened Meissner state is expected to compete with the critical current of the flux-filled sheet only
for samples whose critical current is initially essentially controlled by the edge barrier effect.

PACS numbers: 74.25.Ha, 74.60.Jg, 74.76.–w
Superconductivity is known to be suppressed by exter-
nal magnetic fields and magnetic impurities. In this Letter
it is predicted that magnetic materials used for the condi-
tioning of a magnetic field of a current-carrying conductor
can drastically increase its loss-free current.

There are two alternative loss-free current-carrying
states of a superconductor: flux-free, or Meissner, state
when the magnetic flux is completely expelled from
the sample, and a flux-filled critical state [1] when the
magnetic flux penetrates (also partly) the sample but is
pinned by material inhomogeneities which prevents its
motion and accompanying dissipation. The total current
in the Meissner state is normally much smaller than that in
the critical state and is not considered as competitive with
the latter in large-current applications. In this Letter, we
show that a superconductor sheet possessing a pronounced
edge barrier (of any nature) against a magnetic flux entry
and surrounded by specially designed magnetic shields
may exhibit the Meissner state with a transport current
higher than that in the critical state.

We consider a magnetostatic problem of the Meissner
state of a long thin superconductor sheet carrying a current
I and placed between bulk soft magnets possessing a high
magnetic permeability. In this geometry, the problem
may be reduced to the study of one-dimensional current
distribution over the sheet.

Let the sheet occupy the region jyj # d�2, jxj #

W�2 and be infinite along the z axis. Below, we use
dimensionless length units so that the half-width of the
sheet W�2 � 1. The magnetic field produced by the
isolated thin sheet has no z component and may be
expressed, to an accuracy of d ø 1, by using the Ampere
law as in [2]:

H�x, y� �
1

2p

Z 1

21
du J�u�

�2y, x 2 u�
�x 2 u�2 1 y2 , (1)

where the sheet current J�x� is the transport current
density integrated over the sheet thickness.
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The Meissner state of the sheet means the vanishing of
the Hy component of the field at the sheet surface. This
gives the condition of the virgin state

Hy�x, 0� �
1

2p

Z 1

21

du J�u�
x 2 u

� 0 (2)

for all x [ �21, 1�. The solution to this equation [3],

J�x� �
I

p
p

1 2 x2
, (3)

is physically valid not too close to sheet edges, where it
is violated when jx 6 1j , d � max�d, L�, where L �
l2�d is the typical penetration depth of films and l is the
magnetic field penetration depth in the bulk material.

The solution (3) diverges at the sheet edges where
it, in fact, saturates on the scale of d and achieves the
maximum value of Jm � I�p

p
2d. The virgin state of

the sheet is saved unless Jm exceeds some critical value
JG at which flux first enters the sample from the edges.

In samples of rectangular cross section, JG is de-
termined by the balance between the current-induced
Lorentz force exerted upon magnetic vortices at the sheet
edge and the geometrical barrier force [4,5]. This gives
JG � 2Hc1 which produces, perpendicular to the sheet,
the field component equal to Hc1, the lower critical field
of the bulk material, at the edges and an average sheet
current Jb � pHc1

p
2d.

For thin films with d ø l and clear-cut edges [6]
or thicker sheets with carefully rounded edges [7] the
entry of vortices is determined by the Bean-Livingston
barrier [8] which allows JG as large as the Ginzburg-
Landau depairing current [9]. In what follows, we assume
the Meissner state to be protected by the most robust
geometrical barrier [4,5].

Consider now what happens with the same sheet inserted
between the two magnetic half spaces with the boundaries
y � 6a parallel to the sheet, as shown in Fig. 1a. The
magnetic field may be presented by means of a vector po-
tential as H � m

21
i curlA, [10], where A � �0, 0, A�x, y��
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FIG. 1. (a) Current-carrying sheet parallel to boundaries of
two magnet half spaces and its “images.” (b) Current distri-
bution over the sheet for various distances a from the sheet to
magnets (in units of the sheet half-width W�2).

satisfies the scalar Poisson equation

DA � 2miJ�x�d�y� , (4)

where mi � m1 denotes the magnetic permeability in
between the magnets and mi � m2 inside the magnets.
The vector potential A and its normal to surface derivatives
m

21
i ≠A�≠n should be continuous at magnet boundaries.
The solution to Eq. (4) for the arbitrary sheet current

J�x� may be constructed by means of the method of
images [10]. The sheet produces an infinite succession
of equidistant images separated by the spacing 2a inside
the magnets, as shown in Fig. 1a. Matching the vector
potential and its derivatives at boundaries y � 6a, one
finds a solution between the magnets,

A1 � 2
m1

4p

X
n

qjnj

3
Z 1

21
du J�u� ln��y 2 2an�2 1 �u 2 x�2� ,

where the summation extends over all integers, and inside
the magnets �6y $ a�

A2 � 2
m1m2

2p�m1 1 m2�

X̀
n�0

qn

3
Z 1

21
du J�u� ln��y 6 2an�2 1 �u 2 x�2� ,

where a parameter q � �m2 2 m1���m2 1 m1� , 1.
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The Meissner state is then defined by the condition

Hy�x, 0� �
Z 1

21

du
2p

J�u�
X
n

qjnj x 2 u
�x 2 u�2 1 �2an�2

� 0 . (5)

Here we consider the analytically solvable case of the
soft magnetic material with a very large m2 ¿ m1. In
this case, q ! 1 and Eq. (5) converts to the equation

Z 1

21
du J�u� coth

µ
p

2a
�x 2 u�

∂
� 0 . (6)

Singular integral equations similar to Eq. (6) are known
in the problem of an incompressible ideal fluid flowing
through a regular cascade [11]. Let us introduce new vari-
ables t � tanhpu�2a and t � tanhpx�2a, which vary
on the interval �2l, l� with l � tanhp�2a. Substituting
them into Eq. (6), one finds a divergent solution,

J�x� �
I
a

coshpx�2ap
2 coshp�a 2 2 coshpx�a

. (7)

The transformation of the sheet current during the
change of the distance a between the sheet and the
magnets is shown in Fig. 1b. At distances large compared
to the sheet width, the sheet current reproduces the pattern
(3) of the isolated film, but for the distances a ø 1 the
current distribution changes drastically. The current is
pushed from the inner part of the sheet out to the edges
and is exponentially small at distances larger than a from
the edges. The maximum sheet current at the edge is then
enhanced by the factor

p
p�2a that leads to the reduction

of the total current by the same factor.
Let us recall, that the above picture of current redistri-

bution makes sense down to a 	 d ø 1, where Eqs. (5)
and (6) are no longer valid. In the region a . d, the
maximum averaged sheet current Jc, by which the Meiss-
ner state is still saved, reduces with a decrease of a as

Jc � pHc1

p
2d

s
tanhp�2a

p�2a
. (8)

Let us now consider the case of a transverse position
of the sheet with respect to magnets as shown in Fig. 2a.
The boundaries now assume locations x � 6a, where
a . 1 holds in this geometry. The images of the sheet
are now centered in points x � 2an with n the integer.
The solution to Eq. (4) in between the magnets now reads
[even J�u� is assumed]

A1 � 2
m1

4p

X
n

qjnj

3
Z 1

21
du J�u� ln�y2 1 �x 2 u 2 2an�2� ,

and inside the magnets �6x $ a� it is
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FIG. 2. (a) Current-carrying sheet perpendicular to boundaries
of magnet half spaces and its images. (b) Current distribution
over the sheet for various distances a from the sheet center to
magnets (in units of the sheet half-width W�2).

A2 � 2
m1m2

2p�m1 1 m2�

3
X̀
n�0

qn
Z 1

21
du J�u� ln�y2 1 �x 2 u 6 2an�2� .

The condition of the Meissner state gives an equation

Hy�x, 0� �
Z 1

21

du
4a

J�u� cot

µ
p

2a
�x 2 u�

∂
� 0 . (9)

We manage with this equation similar to Eq. (6). Using
new variables t � tanpu�2a, t � tanpx�2a, which are
defined within the interval �2c, c�, with c � tanp�2a,
we find the sheet current in this configuration,

J�x� �
I
a

cospx�2ap
2 cospx�a 2 2 cosp�a

. (10)

The evolution of the current distribution in the depen-
dence on the distance a to the magnets is shown in Fig. 2b.
The approach of the magnets to the sheet �a ! 1� causes
a flattening of the current distribution and a reduction of
the current peaks at the edges by a factor of

p
1��a 2 1�.

This means that the enhancement of the total current pro-
vided by the edge barrier is by the same factor. By taking
formally a � 1, one finds from Eq. (10) J�x� � I�2 2

const. In fact, a maximum possible current peak reduc-
tion at the edge may be achieved at the smallest reason-
able distance between magnets and the sheet a 2 1 	 d,
which provides the averaged sheet current Jc � Hc1

p
3.
At distances a 2 1 . d, the maximum current at which
the Meissner state is still saved increases with decreasing
a as

Jc � pHc1

p
2d

s
tanp�2a

p�2a
. (11)

The change in the current distribution in the configu-
rations of Figs. 1a and 2a may simply be interpreted
as follows. In the first case, when a ø 1, the current
sheet, together with images, forms an effective current-
carrying “superconducting slab” filling the space between
the planes x � 21 and x � 1. The current in this “slab”
tends to flow in the surface layers close to x � 61, which
is typical of bulk superconductors. In the configuration
of Fig. 2a, the sheet, together with its images, forms,
at a ! 1, an effective current-carrying “superconducting
sheet” infinite in the x direction. Such a “sheet” filled
with a constant sheet current induces only a field parallel
to the sheet which provides its flux-free state. Our
results in the limit q ! 1 are close to those obtained
in a study of a field distribution over a stack and array
of superconducting films performed in Ref. [12], where
equations similar to our Eqs. (6) and (9) were found.

The average Meissner current in the magnetic surround-
ing of Fig. 2a may be, at most, close to the value JG de-
termined by some edge barrier. Now we show that, by a
special choice of the form of magnetic banks, the current-
carrying capability of a sheet in a Meissner state may be
further strongly enlarged. To demonstrate this, we con-
sider for simplicity only the case of a magnet material
with m2 ¿ m1 directly contacting a sheet �a ! 1�.

At q ! 1, the magnetic field lines are practically
perpendicular to magnet boundaries from the side of the
media with smaller permeability m1 as is true in the
case of an electrostatic field near the boundary of a
conductor. This enables us to use a conformal mapping
of the geometry shown in Fig. 2a to find field and
current distributions in the Meissner state for other magnet
configurations.

Let us introduce complex variables s � x 1 iy and
w � z 1 ih and define an analytical function w �
��1 1 s��2�p 2 ��1 2 s��2�p , p . 0. This mapping
keeps the sheet position �21, 1� on the horizontal axis
z and bends the bulk boundaries in a variety of ways,
depending on the p value. The angle between the
intersecting boundaries at points z � 61 equals pp. An
example of the transformed system in new coordinates
�z , h� is shown in Fig. 3a for p � 1�2.

If a vector potential A1 satisfies Eq. (4) with a bound-
ary condition ≠A1�≠n � 0 (Neumann problem) in the con-
figuration of Fig. 2a and a corresponding magnetic field
satisfies the Meissner state condition Hy�x, 0� � 0, then
a vector potential V1�z , h� � A1�x�z , h�, y�z , h�� satis-
fies Eq. (4) presented in new coordinates �z , h� and the
same boundary condition on new boundaries (Fig. 3a).
The Meissner state condition Hh�z , 0� � 2≠V1�≠z �h �
0� � 0 also holds for all z within the interval �21, 1�.
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FIG. 3. (a) The current sheet in an open magnetic cavity
obtained by a conformal mapping of the configuration in
Fig. 2a. (b) Current distributions over the flux-free sheet. The
curves a, b, and c correspond to the isolated sheet, the sheet
perpendicular to magnets (Fig. 2a), and the sheet in the convex
cavity (Fig. 3a), respectively. W�d � 10.

The current distribution over the sheet is given by
the jump of the parallel field component at the sheet
Hz � ≠V1�≠h. For q � a � 1 and p � 1�2, one finds

J�z � � Hz �z , h�jh�20
h�10 � I

2�1 2 z 2�p
2 2 z 2

. (12)

The sheet current vanishes linearly at the sheet edges
(generally, it vanishes as jz 6 1j1�p21 for p , 1) which
enlarges extremely the current-carrying capability of the
sheet.

The Meissner state holds until the sheet current at the
edge �z 	 1 2 d� achieves JG . The filling of the sheet
with a transport current is shown in Fig. 3b for various
magnet geometries. In the configuration of Fig. 3a, the
average sheet current achieves a magnitude of Hc1�4d.

Convenient for the experimental proof of the theory
would be low-pinning single crystals of BSCCO [4,5] or
YBCO [13] whose critical currents are controlled by the
edge barrier or very thin YBCO films whose edge bar-
rier current JG is expected to exceed the bulk pinning
critical current. For a YBCO epitaxial film of thickness
d � 50 nm and width W � 5 mm with l � 0.5 mm [14]
and j � 3.6 nm [15] at 77 K, one finds Hc1 	 2.6 3

103 A�m and critical current density at the edge jG �
JG�d � 107 A�cm2. Then, for the gap of 0.1 mm be-
tween the magnet and the sheet �a � 1.04�, Eq. (11)
gives jc � Jc�d � 3.3 3 106 A�cm2, where a bulk pin-
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ning critical current typical of wide YBCO films may
prevail. A total current of the film in the open convex
cavity (Fig. 3a) with the same distance to magnets should
be 1 order larger.

High Meissner currents in the geometries of Figs. 2a
and 3a may enable vortex penetration from the top and
bottom film surfaces that strongly restricts currents in
anisotropic sheets possessing low parallel critical fields
H

k
c1. However, it is not the case for thin films with

d ø l, where H
k
c1 should be substituted by Hc1�d� �

�2F0�pd2G� ln�2Gd�pj� [16], where anisotropy parame-
ters G 	 6 and G 	 60 are known for YBCO and BSCCO,
respectively. The maximum physically possible depair-
ing current [9] would produce on surfaces a field smaller
than Hc1�d� at d , �12

p
3 l2j ln�2Gd�j��G ln�W�d��1�3

which gives, for both YBCO and BSCCO, the upper esti-
mate of thickness dc 	 0.1 mm.

In conclusion, we have derived analytical solutions for
a current distribution over the flux-free superconductor
sheet surrounded by a soft high permeability magnet
of various configurations. In special geometries, thin
sheets possessing a pronounced edge barrier are shown to
possibly exhibit transport currents exceeding bulk pinning
currents.
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