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Nonlinear Electrodynamics of Randomly Inhomogeneous Superconductors
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We investigate the effect of macroscopic inhomogeneities on nonlinear transport properties of type-II
superconductors and develop an effective medium theory to derive general relations between the global
and local currents and electric fields. We show that even weak inhomogeneities with �dJ2

c � ø J2
c can

qualitatively change nonlinear transport characteristics (here dJc denotes fluctuations of the critical
current density Jc), causing a nonmonotonic magnetic field dependence of the global averaged J̄c�B�,
even if the local Jc�B� decreases with B. We predict a superconducting Gunn effect, for which
inhomogeneities can give rise to negative differential conductivity, bistability, and electric field domains.

PACS numbers: 74.20.De, 74.25.Ha, 74.60.–w
One of the central issues of physics of the mixed
state in type-II superconductors has been thermally ac-
tivated vortex creep characterized by the highly non-
linear electric field-current density (E-J ) characteristics,
E � �J�J�Ec exp�2U�J��T �, below the critical current
density J , Jc. A description of this state has been of-
fered by vortex glass/collective creep models [1], in which
the driven vortex motion is controlled by the diverging ac-
tivation barriers U�J� � Uc�Jc�J�m at J ø Jc. Numer-
ous experiments have indeed found diverging activation
barriers in the flux creep dynamics of high-temperature
superconductors (HTS) [1–3]. Yet many important is-
sues remain unresolved, for example, a nonmonotonic
magnetic field dependence of Jc�B� (“fishtail” effect) [4],
or deviations of the exponent m and the J�E, T , B� char-
acteristics from the scaling predictions of the vortex glass
theory [3], to name a few.

A better understanding of a possible source of these
problems was achieved due to recent advances in experi-
mental techniques, especially magneto-optical imaging,
which has revealed significant spatial variations of local
J�r� in HTS over macroscopic scales, L 	 1 mm 2

1 mm. Even in the best HTS samples (single crys-
tals and films), the fluctuations dJc�x, y� usually exceed
10 30% of the mean J̄c, becoming much stronger, dJc 	
�1 2 10�J̄c, in practical HTS conductors [5]. This fact
poses a fundamental question: to what extent do the ob-
served electromagnetic properties of HTS, obtained by
macroscopic measurements, reflect the underlying glassy
vortex dynamics, rather than the effects of the nonuni-
form, often percolative current flow? Glassy properties
are formed on the spatial scale of the Larkin length Lc,
so macroscopic inhomogeneities of superconducting and
pinning characteristics on the scales L ¿ Lc can strongly
affect the global J̄�E� curves. Therefore, many of the
past results on the nonlinear vortex transport should be
re-examined by taking into account the inevitable macro-
scopic inhomogeneities characteristic of HTS, especially
in the vicinity of the vortex lattice melting [6].
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In this Letter we develop a theory of nonlinear steady-
state transport in superconductors with random macro-
scopic �L ¿ Lc� inhomogeneities. We treat HTS as a
highly nonlinear conductor with a local J � EJ�E, r��E
relation and calculate the global J̄�E0� characteristic by
averaging the local J�E, r� over r and random fluc-
tuations dE�r� around an applied mean electric field
E0, where dE�r� is calculated by solving the Maxwell
equations [7]. This universal approach does not as-
sume any particular model of vortex dynamics and
can be applied to a wider class of problems related
to percolative current transport in nonuniform nonlin-
ear conductors. When discussing new physical effects
[nonmonotonic J̄c�B� or vortex Gunn effect] caused
by inhomogeneities, we illustrate our general results
using different local E�J� characteristics, such as the
power law, E � Ec�J�Jc�n, or vortex glass relation, E ~

exp�2�Jc�J�mUc�T�, as exemplary models. We show
that inhomogeneities that are even weaker than those typi-
cally observed in HTS [5] can dramatically change trans-
port characteristics, if n23�2 ø �dJ2

0 ��J2
0 ø 1, where

�dJ2
0 � is the mean-square variance of the fluctuations of

the critical current density J0 � J�E0� defined at the mean
electric field E0, and n � ≠ lnE�≠ lnJ � mUc�T ¿ 1
[8]. The difference between J̄�E0� and J�E� becomes
especially pronounced for thermally activated vortex mo-
tion, since even weak fluctuations of the activation barrier,
dU 	 T ø U, cause large electric field perturbations
of the local E�r� ~ J exp�2U�J, r��T �. These perturba-
tions change the mean current density J̄ � �J cosu� �
�1 2 �dE2

y��2E2
0�J0, where J0 � �J�E0, r��, u�r� is the

angle between E�r� and E0, �dE� � 0, and the brack-
ets �· · ·� mean statistical averaging. Therefore, the wan-
dering of the current streamlines results in the difference
between the global J̄�E0, T , B� and the local J�E, T , B�,
since �cosu� also depends on E0, T , and B.

We consider an isotropic two-dimensional (2D) current
flow in the ab plane of layered HTS in a strong mag-
netic field, for which the c-axis component of J and the
© 1999 The American Physical Society 3037
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self-field effects can be neglected. Let J�E, f�r�� depend
parametrically on a randomly inhomogeneous macroscopic
characteristic f � f0 1 df�x, y�, �df� � 0. Here f may
stand for any relevant material parameter, such as, Jc, Uc,
Tc, etc. Then Maxwell’s equations div�EJ�E, f��E� � 0
and E � E0 2 =w reduce to the following equation for
the electric potential w:

≠

≠x
sx

≠w

≠x
1

≠

≠y
sy

≠w

≠y
�

J 0

E

µ
Ex

≠f
≠x

1 Ey
≠f
≠y

∂
, (1)

where J 0 � ≠J�≠f, and the differential conductivities
sx � ≠Jx�≠Ex and sy � ≠Jy�≠Ey are given by

sx � �J�E� sin2u 1 s cos2u , (2)

sy � �J�E� cos2u 1 s sin2u , (3)

Here s � ≠J�≠E, E0 1 dEx � E cosu, and dEy �
E sinu. For a uniform state �u � 0�, both sx�E� and
sy�E� essentially depend on E. Below the crossover elec-
tric field Ec separating flux flow and flux creep regimes,
the J 2 E curve can be approximated by the power-law
dependence J � Jc�E�Ec�1�n with n ¿ 1, for which
sx � J0�nE0, sy � J0�E0. For flux flow at E ¿ Ec,
we have J � Jc 1 sfE, thus sx � sf equals the flux
flow conductivity sf , but sy � sf 1 Jc�E ¿ sx .
For E ¿ Ec, the ratio sy�sx � 1 1 Jc�sfE increases
as E decreases, becoming weakly dependent on E at
E ø Ec, where sy�sx � n ¿ 1. The strong conduc-
tivity anisotropy, sx ø sy , is characteristic of the critical
state, for which the longitudinal fluctuations dEx weakly
affect J 
 Jc, whereas the transverse fluctuations dEy

cause a much stronger response dJy due to the local turn
of J. As a result, the current flow past an inhomogeneity
of size L is disturbed on the scale 	L along E0, while on
a much larger scale 	L

p
sy�sx across E0 [9].

We first consider weak inhomogeneities, �dE2
x � ø

E2
0 , for which J̄�E� can be calculated perturbatively in

�df2��f2
0 , expanding J � �E�E�J�E, r� in dE and df,

J̄ �

µ
1 2

�dE2
y �

2E2
0

∂
J0 1

�df2�
2

J 00

1
�dE2

y�
2E0

≠J
≠E

1
�dE2

x �
2

≠2J
≠E2 1 �dfdEx�

≠J 0

≠E
. (4)

Here �dEidEj� are calculated by the Fourier transform of
Eq. (1) in the first order in �df2�, taking the uniform sx,y
in Eqs. (2) and (3) at E � E0 and u � 0,

�dE2
i � � J 02

Z d2k
�2p�2

k2
xk2

i �df�k�df�2k��
�sxk2

x 1 syk2
y �2 . (5)

For isotropic media, the correlation function F�k� �
�df�k�df�2k�� depends only on jkj, allowing for the
integration of Eq. (5) in the polar coordinates k, u. This
yields �dfdEy� � �dExdEy� � 0, and
3038
�dE2
x � �

J 02�df2� �psy 1 2
p
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2s
3�2
x �psy 1
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sx �2

, (6)

�dE2
y � �

J 02�df2�
2
p

sxsy �psx 1
p

sy �2 , (7)

�dExdf� � 2
J 0�df2�

p
sx �psx 1

p
sy �

, (8)

where �df2� �
R`

0 kF�k� dk�2p , is the mean-square vari-
ance. It follows from Eq. (6) that the weak perturbations
regime, �dE2

x� ø E2
0 , occurs at �df2��f2 ø n23�2.

General relations (4)–(8) are independent of the
shape of F�r�, and thus of the spatial scales of f�r�
[10]. In this case inhomogeneities can be quantified
by the only dimensionless parameter h � �dJ2

0 ��J2
0 �P

km�≠J�≠fk� �≠J�≠fm� �dfkdfm��J2
0 , if there are

several nonuniform parameters fk�r�. For instance,
for local flux flow, J�E� � Jc 1 sfE, with fluctu-
ating Jc�r�, we have f � Jc, J 0 � 1 in Eqs. (4)–(8),
which gives J̄�E0� � Jc 1 sfE0 2 hJ

3�2
c �4

p
sfE0

[11]. For the flux creep state with J � Jc�E�Ec�1�n,
Eqs. (4)–(8) yield

J̄ �

∑
1 2

h�n 1 1�
2�1 1

p
n �

∏
J0 . (9)

Here the nonlinearity of J�E� enhances the effect of in-
homogeneities by the factor

p
n ¿ 1, and the interfer-

ence of the magnetic field dependencies of n�B� and
Jc�B� can give rise to a nonmonotonic J̄c�B�. Let us
consider a characteristic for the HTS case of Jc�B, r� �
Jc�r� exp�2B�B0�r�� with independently fluctuating Jc�r�
and B0�r�. Then h�B� � �dJ2

c ��J2
c0 1 B2�dB2

0��B4
0 is

constant at low B and increases with B above B 	 B0.
Accordingly, the flux creep rate s�B� � 1��n 2 1� first
decreases at low B, reaching a minimum sm at Bm ø B0
and then increases approximately linear with B all the
way to B 	 B0, where s�B� 	 n�B� � 1 [3]. Interpolat-
ing s�B� as s�B� � �s2

m 1 s2
1�B�Bm 2 1�2�1�2 with s1 �

Bm�B0, we obtain that J̄c�B� becomes nonmonotonic, if
≠s�≠B . 24s3�2�≠Jc�≠B��hJc (Fig. 1). This condition
can be written in the form h . hf 	 4s3�2�B0�≠s�≠B� 	
�4Bm�B0� �B�B0�3�2, which gives hf ø 1 at B , B0.
Thus, even weak inhomogeneities (h ø 1) can cause the
nonmonotonic J̄c�B� dependence due to a more nonuni-
form current flow at low B.

To describe moderate nonlinear fluctuations at n23�2 ø
h ø 1, we develop an effective medium theory, in which
the fluctuating sx�E� and sy�E� in Eq. (1) are replaced by
their self-consistent mean values s̄i�E0�,

s̄i �
Z

si� f, E�P� f, E, E0� df d2E , (10)

P � A exp

µ
2

df2

a
2

dfdEx

b
2

dE2
x

c
2

dE2
y

d

∂
. (11)

Here i � x, y, the distribution function P� f, E, E0� is
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FIG. 1. J̄c�B� described by Eq. (9) for 1��n 2 1� � �s2
m 1

s2
1�B�Bm 2 1�2�1�2, sm � 0.04, s1 � 0.7�Bm�B0�, Bm � 0.1B0,

�dB2
0� � 0, and �dJ2

c ��J2
c � 0 (a), 0.1 (b), and 0.2 (c).

taken in the Gaussian form, for which A �
p

4b2 2 ac�
2pjbj

p
padc, d � 2�dE2

y �, a � 2�df2� 2 2�dfdEx�2�
�dE2

x �, b � �dfdEx� 2 �df2� �dE2
x���dfdEx�, and c �

2�dE2
x� 2 2�dfdEx�2��df2�. Here �dfdEx� and �dE2

x�
are calculated from Eqs. (6)–(8), in which si are replaced
by s̄i . In this approach the linearized Eq. (1) describes
perturbations dE in an effective medium with the conduc-
tivity s̄ik , which depends on the variance �dE2

i �. Having
solved the self-consistency equations (10) for s̄x and s̄x ,
we can calculate J̄�E0� for any nonlinear J� f, E�,

J̄ �
Z

df
Z `

0
E dE

Z 2p

0
JP cosu du . (12)

For weak fluctuations, c ø E2
0 , Eq. (12) reduces to

Eq. (4). For n23�2 ø h ø 1, the longitudinal fluctua-
tions, �dE2

x� 	 E2
0 , become nonlinear, but the transverse

perturbations, �dE2
y��E2

0 	 �u2� ø 1 remain weak, en-
abling us to solve Eqs. (10)–(12) analytically. In this case
weak inhomogeneities mostly modify the longitudinal
conductivity s̄x � ��u2� 1 1�n�J0�E0, and the small
ratio s̄x�s̄y � �u2� is determined by the inhomogeneity
parameter h ø 1, if n21 ø �u2� ø 1. Writing sik as
s̄x � aJ0�E0, s̄y � bJ0�E0, we reduce Eq. (10) to the
following self-consistent equations for a and b [12]:
p

p h

2b
�

Z `

0

s2ds
� p 1 s2�1�2�q 1 s2�3�2 exp

µ
2

ps2

p 1 s2

!
,

(13)
p

p h

2a
�

Z `

0

qds
� p 1 s2�1�2�q 1 s2�3�2 exp

µ
2

ps2

p 1 s2

∂
.

(14)

Here p � E2
0�2�dE2

x � � a3�2b1�2�h, q � E2
0�2�dE2

y � �
a1�2b3�2�h, and Eq. (12) becomes

J̄ � J0 erf�
p

p � , (15)
where erf�x� is the error function. For b ¿ a, that
is, h ø 1 and 1�n

p
p ø e2p ø 1, the evaluation of

the integrals (13) and (14) yields the following equation
for p:

p �
2
3

ln
k
h

2
1
6

lnp , (16)

giving p � �2�3� ln�k�h�, a � � ph�2�3, b � 1 1 2�3p,
and k � �2�

p
p �3�2 � 1.2. Since e2p 	 h2�3 ø 1, the

asymptotic expansion of Eq. (15) gives the final result

J̄ �

√
1 2

h2�3

2p1�3

!
J0 . (17)

In general, h also depends on E0, thus changing the
shape of J̄�E0� as compared to J�E0�. For instance,
if in J � Jc�E0�Ec�1�n both Jc and n independently
fluctuate, then h � �dJ2

0 ��J2
0 � hc 1 hn ln2�Ec�E0�,

where hc � �dJ2
c ��J2

c , and hn � �dn2��n2. More-
over, the dependence of h on E0 causes a nega-
tive global differential conductivity G � ≠J̄�≠E0, if
J0≠h�≠E0 . 3� ph�1�3≠J0�≠E0. As an important il-
lustration, we consider the vortex glass J 2 E curve,
J � Jc��1 2 �T�U� ln�E�Ec��1�m, where Ec is a fixed
electric field criterion for Jc. In this case fluctuations of
dJc are coupled with fluctuations of the potential barrier
dU due to the general relation U ~ J

2g
c of the collective

creep theory [1]. This gives dU�U � 2gdJc�Jc, where
g ranges from 1�2 for the 3D weak collective pinning to
3 for the 2D weak pinning of pancake vortices, depending
on the relevant region of the B-T phase diagram [1]. As a
result, h � �dJ2

0 ��J2
0 takes the form

h � hc

∑
1 1

g�T�U� ln�E0�Ec�
m�1 2 �T�U� ln�E0�Ec��

∏2

. (18)

Equation (18) describes h�E0� at E0 , Ec, where h�E0�
increases with E0 because of the coupling of fluctuations
of dU and dJc. Generally, h�E0� reaches a maximum
at E0 	 Ec and then decreases with E0, becoming in-
dependent of E0 in the flux flow state, E0 ¿ Ec, where
h ! hc is determined by only dJc fluctuations. The evo-
lution of J̄�E0� with hc is shown in Fig. 2. Clearly both
the slope ≠J̄�≠ lnE and the curvature of J̄�E0� essentially
change as h increases. This fact can account for the sub-
stantial deviations of the observed J̄�E0� and m extracted
from flux creep or resistive measurements [3] from pre-
dictions of the vortex glass theory. For T ø U, J̄�E0�
becomes nonmonotonic, if hc .

p
p �1 1 �2g�3��23�2.

Therefore, the dependence of h�T , B, E0� on B and E0 can
cause both the fish-tail effect and the negative differential
conductivity Ḡ�E0�. In turn, the negative G�E0� qualita-
tively changes macroscopic electrodynamics of HTS, re-
sulting in the Gunn instability of uniform current flow and
the appearance of macroscopic electric field domains [13].
Notice that the strong coupling of fluctuations of dU and
dJc for pancake vortices �g � 3� makes layered HTS
particularly susceptible to such instability, which can be
induced by rather weak inhomogeneities, hc ø 1. The
3039
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FIG. 2. J̄�E0� calculated from Eqs. (15)– (18) for g � 3,
m � 2, T�U � 0.2, and �dJ2

c ��J2
c � 0 (a), 0.2 (b), and 0.6

(c). The inset shows the circuit, which provides a stable electric
field domain (hatched).

electric field domains are also likely to appear in the vicin-
ity of the second peak in Jc�B�, where the effect of in-
homogeneities is amplified by the premelting conditions
of the vortex lattice, which breaks up into a mixture of
the fluidlike puddles with Jc � 0 and solid crystalline do-
mains with finite Jc . 0. This two-phase vortex struc-
ture gives rise to a highly nonuniform current distribution,
facilitating the characteristic manifestations of the Gunn
instability, such as electric field domains, hysteresis of
J̄�E0�, and temporal voltage oscillations in the fixed cur-
rent mode [13,14].

The electric bistability at the fixed current density, J �
Jp , is illustrated in Fig. 2, where the intersection points
1 and 3 correspond to stable “phases” with E � E1 and
E � E3, respectively. A macroscopic domain of E � E3
and length D expands if J . Jp and contracts if J , Jp ,
where Jp satisfies the “equal area theorem” in Fig. 2 [13],Z E3

E1

�J�E� 2 Jp� dE � 0 . (19)

The electric field domain can be stabilized by a feedback
circuit shown in the inset of Fig. 2. In this case the
equilibrium domain length D is calculated by equating
the voltages on the shunt R and the superconductor of
length L provided that the current in the sample equals Ip .
Thus, �I0 2 Ip�R � LE1 1 �E3 2 E1�D, and D linearly
increases with the applied dc current I0,

D � ��I0 2 Ip�R 2 LE1���E3 2 E1� . (20)
In conclusion, we have calculated the global current
J̄�E0, T , B� in randomly inhomogeneous superconductors
3040
and have shown that weak macroscopic nonuniformities
can result in fish-tail and vortex Gunn effects. Our
approach can also be applied to a wide class of transport
phenomena controlled by percolative current flow in
nonuniform nonlinear conductors.
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