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Spontaneous Emission of Phonons by Coupled Quantum Dots
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We find an interference effect for electron-phonon interactions in coupled semiconductor quantum
dots that can dominate the nonlinear transport properties even for temperatures close to zero. The
intradot electron tunneling process leads to a “shake up” of the phonon system and is dominated by a
double-slit-like interference effect of spontaneously emitted phonons. The effect is closely related to
subradiance of photons (Dicke effect) in a laser-trapped two-ion system and explains the oscillations in
the nonlinear current-voltage characteristics of coupled dots observed recently.

PACS numbers: 73.23.Hk, 42.50.Fx, 71.38.+ i
Spontaneous emission is one of the fundamental con-
cepts of quantum mechanics that can be traced back to such
early works as those of Albert Einstein [1]. An excited
state of a single atom decays exponentially due to the cou-
pling to photons. In a system of two atoms interacting via
the common photon field, the decay splits into a subradi-
ant and a superradiant channel. This effect is a precursor
of the famous Dicke superradiance phenomenon [2] and
was verified experimentally in the spontaneous emission
of photons from two trapped ions only three years ago [3].

Recently, in a completely different physical system,
the emission of phonons from two artificial atoms has
been observed [4]. Here, the coupling to the phonon
degrees of freedom turned out to dominate the nonlinear
electron transport through semiconductor double quantum
dots even at mK temperatures.

Double quantum dots are well-defined artificial sys-
tems for the study of interaction [5] and coherent time-
dependent [6] effects. Here, we propose a theory for a new
nonlinear transport effect in double quantum dots which
corresponds to the Dicke effect, i.e., the collective decay of
real atoms. In our theory, the tunneling of single electrons
through coupled artificial atoms is renormalized by the in-
teraction with piezoelectric acoustic phonons and leads to
an orthogonality catastrophe of the phonon bath if an elec-
tron tunnels between the dots. This “boson shake up” ef-
fect [7,8] is determined by an effective density of states
r�v� of the phonon modes Q that couple to the tunnel-
ing process. These interfere as in a double slit experi-
ment when interacting with the electron densities in the
two dots. As a result, r�v� shows oscillations on a scale
vd :� cs�d, where cs is the speed of sound and d the
distance between the centers of the two dots. It turns out
that the nonlinear current peak as a function of the differ-
ence ´ between the two relevant many-particle energies is
determined by the shape of r�v � ´�h̄�. Furthermore,
this quantity is analogous to the rate for emission of sub-
radiant photons from two laser-trapped ions [3], when cs
is replaced by the speed of light and d by the distance
of the ions. Thus, both phenomena are physically closely
related. This provides the microscopic mechanism for the
oscillations observed recently in a double dot current spec-
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trum [4]. We predict that future experiments with artificial
atoms can exploit this analogy to real atoms in more de-
tail. In particular, coherent effects such as superradiance
[9] can be manipulated by gate voltages and external leads
in such systems [10].

In our model, we consider a double quantum dot consist-
ing of a left and a right dot (L and R, respectively) which
are connected via a tunnel barrier. Each dot is connected
to an electron reservoir in thermal equilibrium with chemi-
cal potentials mL (source) and mR , mL (drain). For the
physical phenomena we are interested in, it is sufficient
[11] to restrict the dot Hilbert space to the three states j0� �
jNL,NR�, jL� � jNL 1 1,NR�, and jR� � jNL,NR 1 1�,
which correspond to many-particle ground states with
NL�11� electrons in the left and NR�11� electrons in the
right dot. The corresponding ground state energies ´L of
jL� and ´R of jR� are in the window mL . ´L, ´R . mR .
We assume that the Coulomb charging energy Uc is the
largest energy scale, and it is not possible to charge the
double dot with more than one additional electron. In [4],
no enhanced tunnel current was observed for ´ :� ´L 2

´R , 0 at low temperatures so that excited many-body
states play no role. In particular,Uc � 1 meV was 1 order
of magnitude larger than the external source drain voltage
VSD . This situation has to be contrasted with the regime
VSD * Uc (absence of blockade effects [12]).

We define operators nL � jL� �Lj, nR � jR� �Rj, p �
jL� �Rj, sL � j0� �Lj, sR � j0� �Rj, and the total system
Hamiltonian H as the sum of the dot, the phonon, the
reservoir, and the electron-phonon interaction
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Here, the tunneling between left and right dots is described
by a single tunnel matrix element Tc. In the standard tun-
nel Hamiltonian HV , Vk and Wk couple the dot to a con-
tinuum of channels k of the left and right electron reservoir
Hres. The spin of the electron does not play any role here
and is suppressed. The termHp describes the lattice vibra-
tions in harmonic approximation; the creation operator for
a phonon of mode Q is a

y
Q. The electron-phonon matrix

elements are defined by aQ :� lQ�LjeiQrjL� and bQ :�
lQ�RjeiQrjR�, where lQ is the matrix element for the in-
teraction of 2D electron gas (EG) electrons and phonons.
We have already neglected the nondiagonal term of the
electron-phonon interaction which contains matrix ele-
ments gQ :� lQ�LjeiQrjR�. We have checked in a sepa-
rate master equation calculation that such terms modify
only weakly the tunnel current and do not lead to the
oscillatory phenomena observed in [4], which is due to
the nonperturbative shakeup process that we describe as
follows.

Suppose an electron tunnels between two regions of
space (L andR) and interacts with a phonon field. With the
interaction of the form Hab , Eq. (1), the electron-phonon
coupling locally changes the energy of the electron, de-
pending on whether it is in L or in R. During tunneling,
its wave function experiences an additional phase shift eif

due to this coupling. This phase shift is zero if the cou-
pling is identical in both regions, i.e., if aQ � bQ. If, as
we show below, aQ fi bQ, the phase shift depends on the
state of the phonon field. From the point of view of the
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phonons, initial (before the tunneling) and final (after tun-
neling) phonon states are no longer the same. From the
point of view of the electron, the effective tunnel ampli-
tude changes nontrivially. In particular, it becomes time
dependent.

We introduce now a unitary polaron transformation
[13] of the Hamiltonian that naturally leads to the
phase factors mentioned above. For any operator O,
we define O :� eSOe2S , S :� nLA 1 nRB with A :�P

Q�1�vQ� �aQa
y
Q 2 a2QaQ� and B :�

P
Q�1�vQ� 3

�bQa
y
Q 2 b2QaQ�. This leads to renormal-

ized energies ´L � ´L 2
P

Q jaQj
2�vQ and

´R � ´R 2
P

Q jbQj
2�vQ, and a renormalized in-

tradot tunneling Hamiltonian HT � Tc�pX 1 pyXy�.
Here, the phase operator X �

Q
QDQ����aQ 2 bQ��vQ���

is the product of unitary displacement operators
DQ�z� :� exp�zayQ 2 z�aQ�, where the operation of
DQ�z� on the boson vacuum creates a coherent state of
the boson field mode Q. The factors X and Xy in the
tunnel Hamiltonian HT drastically change the transport
properties of the double dot.

We assume that the coupling to the left and right
electron reservoirs is weak such that a standard Born
and Markov approximation holds. In contrast to this, we
calculate to all orders of the intradot tunneling Tc and the
electron-phonon coupling because the renormalization of
the tunneling by the phase factors X is a nonperturbative
effect. From the Liouville equation for the total density
matrix of the system, one obtains the equations of motion
(cp. [11,14])
d
dt
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d
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Z t

0
dt0 ei´�t2t0��XtX

y
t0 p̃�t0��t0 2 iTc

Z t

0
dt0 ei´�t2t0���nLXtX

y
t0 �t0 2 �nRX
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(2)
where GL :� 2p
P

k V
2
kd�´L 2 ´

L
k�, GR :� 2p 3P

kW
2
kd�´R 2 ´

R
k�, and the chemical potential mL (mR)

of the left (right) electron reservoir is assumed to be far
above (below) ´L (´R) so that no electrons can tunnel
from the left dot into the left reservoir or from the right
reservoir into the right dot. Furthermore, ´ � ´L 2 ´R ,
where we neglect the difference in the energy renormal-
ization in both dots, p̃�t� � pei´tXt , and Xt denotes the
time evolution of X with Hp .

We assume the phonon system to be in thermal equi-
librium at all times. We use a decoupling of the reduced
density matrix r̃�t0� of the dot, r̃�t0� � r

0
ph Trph� r̃�t0�	.

We introduce the Laplace transform
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0 dt e
2zt�nL�t , etc., for z . 0. By trans-

forming Eq. (2) into z space, the expectation value of the
current operator Î :� iTc�p 2 py� (we set the electron
charge e � 1 for convenience) can be obtained in the sta-
tionary limit t ! ` from the 1�z coefficient of the I�z�
expansion into a Laurent series for z ! 0. The result is
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(4)

Here, C´ � C´�d ! 0�. One can verify that in the limit
of no phonon coupling C´ � i�´, thus obtaining a simple
Lorentzian curve for the stationary tunnel current as a
function of ´ [11]. The appearance of Tc in the denomi-
nator of Eq. (4) indicates that this result is nonperturba-
tive, i.e., valid to all orders in Tc. The modification of this
curve by the electron-phonon interaction is completely de-
scribed by the form of C´ which we will discuss now.



VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999
For a harmonic phonon system in thermal equilibrium at temperature T , one finds the correlation function
�XtX

y
0 �0 � e2F�t2t0� with

F�t� :�
Z `

0
dv r�v�

(
�1 2 cosvt� coth

h̄v

2kBT
1 i sinvt

)
,

r�v� �
X
Q

jaQ 2 bQj
2

v2 d�v 2 vQ� . (5)
The matrix elements aQ and bQ are aQ �
lQ

R
d3x eiQxrL�x�, bQ � lQ

R
d3x eiQxrR�x�, with

the local electron densities rL�x� and rR�x� in the left
and the right dots, respectively. The exact form of
both rL�x� and rR�x� depends on the shape of the dots
and on the number of electrons NL and NR . In the
stationary state for t ! `, both densities can be assumed
to be smooth functions of x, rL�x� � re�x 2 xL�,
rR�x� � re�x 2 xR�, where we have assumed that
both left and right electron densities are described by
the same profile. Here, re�x� is relatively sharply
peaked around zero. One obtains aQ � lQeiQrLP�Q�,
bQ � lQeiQrRP�Q�, where P�Q� �

R
d3x eiQxre�x�.

Therefore, bQ � aQeiQd with d � rR 2 rL. The matrix
elements aQ and bQ thus coincide up to the phase factor
eiQd. This phase factor is the origin of the oscillations in
the effective density of states r�v� of phonon modes that
couple to the tunneling process. We note that the explicit
form of aQ and bQ can be calculated exactly when the
two states jL� and jR� are few particle wave functions.

For sharp charge density profiles with Fourier transform
P�Q� ! 1, we find

r�v� �
g
v

"
1 2

vd

v
sin

√
v

vd

!#
e2v�vc ,

g �
l2

p2c3
s h̄

2 , (6)

where vd :� cs�d, d � jdj, cs is the longitudinal speed
of sound, and a smooth exponential cutoff vc is an
effective Debye frequency. The latter is due to the finite
extension l of the wave functions in the dots leading to
a cutoff of phonons with wave vectors Q � jQj * 1�l.
The phonons are assumed to be piezoelectric acoustical
bulk (three-dimensional) modes with an interaction matrix
element jlQj2 � l2�VcsQ, l2 � h̄P�2rM , where vQ �
csQ is the phonon dispersion, V the volume, rM the mass
density of the crystal, and P the piezoelectric coupling
constant. Dynamical screening effects of the 2DEG have
been absorbed into the value of P. Using typical GaAs
parameters [15], we obtain g � 0.05.

The most important features of r�v�, Eq. (6), are the
oscillations on the scale vd � cs�d (Fig. 1, inset). In
fact, these lead to the oscillations in the current profile due
to phonon emission in the experiment [4]: Fig. 1 shows
the stationary current Eq. (4) at different temperatures for
parameters close to the ones of the experiment. With d �
200 3 1029 m and cs � 5000 m�s, we obtain h̄vd �
16.5 meV, which is the scale on which the oscillations
occur [4]. The cutoff energies are assumed as h̄vc �
1 meV and h̄d � 1 meV. A small but finite value of
d in C´�d ! 0� simulates off-diagonal electron-phonon
processes which are not included in r�v� for h̄v �
´ ! 0. At low temperatures, there is a broad oscillatory
shoulder for ´ . 0 (spontaneous phonon emission). It
reflects the oscillations in r�v� which in turn determines
C´ in Eq. (4). Its real part �C´ is proportional to
the probability density for inelastic tunneling from the
left to the right dot with energy transfer ´ [8]. In the
limit vd � 0, one finds �C´ � 
2p�G�g��´g21e2´u�e�
at T � 0, where only spontaneous phonon emission is
possible. This shows that the effect is nonperturbative
in the electron-phonon coupling g. As an important
consequence, even for small coupling constants g and
T ! 0, the electron-phonon interaction can dominate
the nonlinear electron transport. Furthermore, we find
an energy dependence of the current for ´ * 50 meV
between 1�´ (larger g) and 1�´2 (smaller g), depending
on g. Note that the tunnel current I is determined by the
complex function C´ which contains all effects of energy
renormalization due to the electron-phonon coupling. At
higher temperatures, the current at the absorption side
´ , 0 increases faster than at the emission side where
the oscillations start to be smeared out. For ´ , 0 a
shoulderlike structure appears at higher T , consistent with
the observation in [4].

FIG. 1. Stationary tunnel current, Eq. (4), as a function of the
energy difference ´ between left and right dot ground state
energies. Dimensionless electron-phonon coupling parameter:
g � 0.05. Inset: effective density of states r�v� of phonon
modes, Eqs. (5) and (6).
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We note that our results are consistent with a previous
model [16] for inelastic tunneling via pairs of impurities.
There, perturbation theory in the electron-phonon defor-
mation potential coupling was used to obtain the nonlinear
current (without oscillations) for large area tunnel junc-
tions after averaging over an ensemble of impurity pairs.

The spontaneous emission of phonons in double dots is
closely analogous to the subradiant spontaneous decay by
emissions of photons from a laser-trapped two-ion system
[3]. There, the interaction of the atomic dipoles d̂i , at
positions ri , i � 1, 2, with the electromagnetic field has
the form [17]

He-ph �
X
Qs

gQs�d̂1 expiQr1 1 d̂2 expiQr2� , (7)

with gQs � 2i�2pcQ�V �1�2 �́ Q,s with the speed of light
c, and polarization vectors �́Q,s for polarization direc-
tion s. This leads to rates for superradiant and sub-
radiant decay of the form [9] G�Q�6 � G0�Q� 
1 6

a sin�Qd���Qd�� with a � 1 (a � 3�2) if the vector
character of the light is (not) neglected, Q � v�c, and
G0�Q� ~ Q3. The subradiant channel (2) is due to the
decay of the singlet state that corresponds to the differ-
ence d̂1 expiQr1 2 d̂2 expiQr2 of the dipole moments.
The interaction with a phonon of mode Q in the dou-
ble dot is ~ nL expiQr1 1 nR expiQr2. Thus, it has the
same “interference form” as in the two-ion case, Eq. (7).
The tunnel current is modified by the phase difference of
the electron before and after tunneling, and r�v�, Eq. (6),
corresponds to the subradiant rate G2. Although the mi-
croscopic mechanism is different in both cases (for light
the rates G0 are ~ v3, for piezoelectric phonons ~ 1�v),
the interference term sin�Qd��Qd in both cases is due
to the “interference of matrix elements” in the interaction
Hamiltonian and has the same physical origin.

In the atom-trap experiment, the Dicke effect, i.e., the
existence of two different radiation channels G6, has been
verified by changing the ion distance. The experimental
data of the double quantum dot [4] seem to indicate
that for a larger distance d of the dots the oscillations
~ sin�´�h̄vd� as a function of ´ become faster which is
consistent with vd � cs�d in Eq. (6).

In conclusion, we have found an interference effect
which explains the recently observed phonon emission
spectrum in the transport through coupled quantum dots.
The analogy between artificial and real multiple atom sys-
tems allows one to speculate about further realizations of
coherent optical effects in semiconductor quantum dot ex-
periments, similar to the oscillatory Dicke effect we have
found recently [10]. In the case of phonons discussed here,
the coherence (oscillations due to interference) showed up
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within a dissipative process, i.e., spontaneous emission. In
order to further study such “coherent dissipative phenom-
ena,” we suggest systems of two or more double quantum
dots which are coupled via the common phonon field. The
nonlinear transport properties are then determined by the
electron-phonon coupling both within each and between
the double dots.
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