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Multiconical Intersections and Nondegenerate Ground State in E ≠ e Jahn-Teller Systems
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We have investigated the E ≠ e Jahn-Teller problem with large quadratic coupling. Our results
reverse the paradigm that, in E ≠ e Jahn-Teller systems, the ground vibronic state should be the same
as that of the initial doubly degenerate electronic E term. The E vibronic state is the ground state
for small quadratic coupling when the dominant tunneling path between the potential surface minima
encircles one central conical intersection, whereas for large quadratic coupling it goes around four
conical intersections and the ground state becomes nondegenerate.

PACS numbers: 71.70.Ej, 03.65.Bz, 31.30.Gs, 82.90.+ j
There is a widespread belief that the ground state sym-
metry of any vibronic system is the same as that of the ini-
tial degenerate electronic state. The assumed ground state
symmetry significantly affects the interpretation of the ob-
served properties of the system. In particular, this assump-
tion lies in the base of the theory of vibronic reduction
factors widely used to derive the ground state properties
from those of the degenerate electronic state [1,2]. There-
fore, the problem of whether the ground state symmetry
is that of the initial degenerate electronic state or not is a
matter of fundamental importance. The concern about this
point has been increased after the finding that for some pa-
rameter values the ground vibronic state in the Jahn-Teller
H ≠ h problem is nondegenerate [3], which shattered the
paradigm that the vibronic ground state should have the
same degeneracy and symmetry as the initial degenerate
electronic state.

In this Letter, we revisit the E ≠ e Jahn-Teller sys-
tem with strong vibronic coupling including quadratic and
fourth order terms, and examine whether the nondegener-
ate A symmetry ground state exists or not. Contrary to the
experience-based belief, we found that the ground state of
this system may be nondegenerate, of A type. It exists
in cases where the quadratic vibronic coupling constant is
sufficiently large.

In the case of the strong vibronic coupling, the tun-
neling between the minima of the adiabatic potential of
Jahn-Teller systems was first studied by Bersuker [4]. He
started from the deep minima of the adiabatic potential
of the ground state and diagonalized the full Hamilton-
ian using the displaced harmonic oscillators as a basis set.
The ground state of the system was found in this way to
be nondegenerate with the twofold degenerate E tunnel-
ing level higher in energy. This result was questioned
after the work of O’Brien [5], in which numerical calcu-
lations starting from the linear E ≠ e problem and treat-
ing quadratic vibronic coupling as a perturbation yield the
doubly degenerate E level as the ground term. The subse-
quent works on the E ≠ e problem followed this scheme
and resulted in the E ground state, contributing thus to the
formation of the above-mentioned paradigm.
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The double degeneracy of the vibronic ground state was
first obtained by Longuet-Higgins et al. [6]. In the case of
strong vibronic coupling with deep potential minima it can
be associated with the Berry phase [5,7,8] arising from
the conical intersection of the adiabatic potential surface.
O’Brien attached a phase factor to the wave function
in order to satisfy the sign-change boundary condition
[5]. Polinger obtained the E symmetry ground state
considering a closed loop around the conical intersection
at the center and using the WKB connection formula
for the tunneling by imposing an antiperiodic boundary
condition [9]. It is also shown by Ham that the sign-
change boundary condition required by the Berry phase
gives the doubly degenerate ground state [8].

However, in the case of sufficiently strong quadratic
coupling, three additional conical intersections on the in-
terminimum barriers come close to the one at the center.
Then, two types of important tunneling paths that penetrate
the interminimum barrier are possible: one goes through
the saddle point between the conical intersections at the
center and at the barrier, and the other goes through the
saddle point outside of both of them. The dominant tun-
neling path will be the one that yields the larger tunneling
rate between the two. It is plausible that the two types of
tunneling paths, mentioned above, form parts of two dif-
ferent stationary semiclassical paths for the path integral
representation of the resolvent [10], where one of them
encircles the conical intersection at the center only, and
the other goes around all four. As shown by Zwanziger
and Grant, the electronic wave function does not change
sign after the circular transportation along a closed loop
that goes outside of all four conical intersections [11]. By
employing the same type of argument as that of Polinger
[9] for this closed path, it can be easily shown that the
ground state of this system is nondegenerate with A sym-
metry. Then we can assume that the change of the ground
state symmetry and degeneracy from A to E is correlated
with the change of the dominant tunneling path. We will
show below that this is indeed the case and the change
of the ground state degeneracy (the A-E level intersec-
tion) is directly correlated to the change of the dominant
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tunneling path which is estimated by the one-dimensional
WKB tunneling rate.

The model Hamiltonian for doubly degenerate elec-
tronic states �ja�, jb�� of the E representation and
doubly degenerate normal vibrational coordinates
Q1 � r cosu, Q2 � r sinu of the E representation is
given by

H � H0 1 H1 1 H2 , (1)
where

H0 �
X

e�a,b
h2DHOje� �ej , (2)

where h2DHO the Hamiltonian for the two-dimensional
isotropic harmonic oscillator,
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H1 is the vibronic interaction Hamiltonian given by

H1 �

µ
kre2iu 1

1
2

gr2ei2u

∂
ja� �bj 1 H.c. , (4)

and H2 is the fourth order term

H2 �
X

e�a,b

fr4je� �ej . (5)

This term is included in order to have a bound ground
state for a large quadratic coupling constant g $ 1 [12].

The adiabatic potential surfaces are obtained as

U6 �
1
2

r2 1 fr4 6

s
k2r2 1 kgr3 cos3u 1

1
4

g2r4 ,

(6)

with double-valued adiabatic electronic wave functions
jw1� � �e2ia�2ja� 1 eia�2jb���

p
2 and jw2� �

�e2ia�2ja� 2 eia�2jb���
p

2, for U1 and U2, respectively,
where a � tan21��k sinu 2 0.5gr sin2u���k cosu 1

0.5gr cos2u�	.
We diagonalize the Hamiltonian (1) numerically

using the basis set je� ≠ �r, ujy, m�, e � a, b,
y � 1, 2, . . . , m � y 2 1, y 2 3, . . . , 2y 1 1, where

�r, ujy, m� � �21�n

µ
n!e2r2

p�n 1 jmj�!

∂1�2

rjmjLjmj
n �r2�e2imu ,

(7)

with n � �y 2 jmj 2 1��2. The basis functions
�r, ujy, m� are eigenfunctions for the two-dimensional
harmonic oscillator Hamiltonian h2DHO with eigen-
values Eym � y. Nonzero matrix elements for the linear
vibronic coupling term re2iu are given by [6,13]

�y, mjre2iujy 1 1, m 1 1� �
p

�y 1 m 1 1��2 ,

�y, mjre2iujy 2 1, m 1 1� �
p

�y 2 m 2 1��2 ,

(8)

and matrix elements for reiu , r2e2i2u , r2ei2u , and r4

can be calculated using Eq. (8).
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Let us start with the f � 0 case. In this case, the
quadratic coupling parameter g must be smaller than 1
in order to have the U2 value bounded from below. In
Fig. 1(a), vibronic energies for the lowest eight states
of the k � 0 and the f � 0 case are shown [14]. At
g � 0.918 the crossing of the lowest E and the lowest
A energy levels occurs and the nondegenerate A state
becomes the lowest for g . 0.918. Even when k fi 0
(a small linear coupling term is turned on), the A state
becomes the ground state at large g values. With k � 0.1,
the ground state becomes an A state when g is larger than
0.922 [Fig. (b)]. If the quadratic coupling parameter g is
larger than 1, the fourth order terms must be included. In
Fig. 1(c), the case k � 0.5 and f � 0.5 is shown. The
crossing of the lowest E and A states occurs at g � 4.50.

Now let us consider the situation where the vibronic
coupling is very strong, and the ground state nuclear
dynamics is considered to be performed on the single
potential surface with deep minima. In this case, the
energy difference between the lowest A and E states
is considered as due to the tunneling splitting [4,9].
The relevant potential energy surface is given by V �
U2 1 HBH, where HBH is the Born-Huang term [15] (or
centrifugal energy [2]) given by

HBH �
1
2

2X
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¿
�

1
8
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where

=a �
2kg sin3uer 1 �2k2r21 2 k2r 2 kg cos3u�eu

2k2 1
1
2g2r2 1 2kgr cos3u

.

(10)

The potential energy surfaces U6 exhibit a conical
intersection at the center r � 0 and three periph-
eral ones at �Q1, Q2� � �2kg21 cos�321�2n 1 1�p	,
2kg21 sin�321�2n 1 1�p	�, n � 0, 1, 2 (Fig. 2) [16]. At
each conical intersection �Q1c, Q2c�, HBH provides a
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FIG. 1. Energies for the lowest eight vibronic states versus
the quadratic coupling constant g. Solid and dotted lines de-
note nondegenerate and doubly degenerate states, respectively.
(a) k � 0, f � 0; (b) k � 0.1, f � 0; (c) k � 0.5, f � 0.5.
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FIG. 2. Potential surface of the E ≠ e system for k � 0.9,
g � 2, and f � 0.05. (a) Cross section of the potential
surfaces V (solid line) and U6 (dotted line) at Q2 � 0. C1 and
C2 indicate conical intersections, while P1 and P2 indicate two
saddle points on V . (b) Contour plot of the potential surface
V . “�” and “1” indicate a conical intersection and a minimum,
respectively. Two steepest decent tunneling paths P1 and P2
are shown by thick lines.

diverging term proportional to ��Q1 2 Q1c�2 1 �Q2 2

Q2c�2	21 
 r22
c because the adiabatic wave function

depends on the circular angle around the conical intersec-
tion uc 
 tan21��Q2 2 Q2c���Q1 2 Q1c�	, which gives
rise to the contribution proportional to jr21

c ≠jw2��≠ucj
2.

Thus, the access of the nuclear motion to conical intersec-
tions is prohibited. A fictitious magnetic field that gives
rise to the appearance of the Berry phase and causes the
sign change of the wave function exists at each conical
intersection.

Two steepest decent paths that connect nearby minima
through two different saddle points, one between the
conical intersections at the center and at the barrier �P1�
and the other outside both of them �P2� for the values
k � 0.9, g � 2.0, and f � 0.05, are shown in Fig. 2. As
is seen from Fig. 2(a), HBH gives a large contribution to
energy near the conical intersections and makes the barrier
for the path P1 significantly higher than that for the path
P2. As a result, the barrier for P1 is high and thin, while
that for P2 is characterized as low and thick.

The absolute values of the energy difference between
the lowest A and E states for three values g � 2.0, 1.9, 1.8
and f � 0.05 by varying k from 0.5 to 1 are shown in
Fig. 3(a). The triply degenerate ground state intersection
points are obtained at k � 0.82, 0.68, and 0.54 for g �
2.0, 1.9, and 1.8, respectively. If k is larger than this
value, the ground state is E, and if it is smaller the ground
state is A symmetry.

We estimate the tunneling rate for P1 and P2 using the
WKB method given by

exp�2Si� � exp

µ
2

Z
Pi

p
2�V 2 E� dq

∂
, i � 1, 2 .

(11)

In Fig. 3(b), j exp�S1 2 S2� 2 1j and the correlation
of the g versus k values at the intersection points
FIG. 3. (a) The absolute values of the energy difference
jEA 2 EEj between the lowest A and E levels, and (b) the
ratios of the tunneling rates via P1 and P2 paths (plotted as
j exp�S1 2 S2� 2 1j) as functions of k for f � 0.05 and three
values of g � 2.0, 1.9, and 1.8. Calculated points are indicated
by “1” and polynomially interpolated curves for g � 2.0, 1.9,
and 1.8 cases are depicted by solid, dotted, and dash-dotted
lines, respectively, in (b). Inset: The g versus k values at the
crossing points EA � EE (solid line) and at S1 � S2 (dotted
line).

EA � EE with the corresponding values at S1 � S2
are shown. A qualitatively good correlation between
the crossing points of energy levels EA � EE and by
equitunneling rate points via the two paths S1 � S2 is
obtained [Fig. 3(b), inset]. Note that the present estimate
of the tunneling rate based on the one-dimensional WKB
is not very accurate. A more accurate estimate including
the multidimensionality of the tunneling [17] may yield a
quantitatively better correlation. This strong correlation
between the change of the degeneracy of the ground state
and the change of the dominant tunneling path suggests
that the former is caused by the latter through the change
of boundary condition on the wave function, which gives
us a clear explanation of the origin of the energy level
E-A crossover as due to the presence of two alternative
tunneling passes which yield two Berry phases, p and
4p, respectively.

The change of ground state symmetry and degeneracy
as a function of intermolecular interactions seems to be
of general importance. For instance, it follows from
the crystal field theory that the ground state symmetry
changes with the strength of the crystal (or ligand) field;
the phenomenon is known as spin crossover and it has
significant implications in magnetic materials [18]. The
energy level crossover discussed above may be regarded
as a part of this general understanding.

In summary, we confirmed the existence of the nonde-
generate vibronic ground state in the E ≠ e Jahn-Teller
systems first suggested in [4]. It exists in cases where the
quadratic coupling constant is sufficiently large [19]. We
have also elucidated the mechanism of the E-A energy
level crossover by demonstrating the correlation between
the change of the degeneracy of the tunneling-split ground
state and the change of the dominant tunneling path:
one goes through the saddle point between the conical
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intersections at the center and at the barrier, the other goes
through the saddle point outside of both of them.
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