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Large Lattice Discretization Effects on the Phase Coexistence of Ionic Fluids
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We examine the phase behavior of lattice restricted primitive models for integer values of the ratio of
ionic diameter to lattice spacing,j. For j # 2, there is coexistence between a disordered phase and an
antiferromagnetic phase, but no vapor-liquid equilibrium. Forj $ 3, a region of normal vapor-liquid
coexistence is found, with critical temperatures and densities which are very close to their continuous
space counterparts. Our findings stress that lattice structure can result in qualitatively different physics
from continuous space models, but that the two models converge even for relatively coarsely discretized
lattices.

PACS numbers: 64.70.Fx, 05.70.Fh, 64.60.Kw
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The liquid-vapor coexistence of the restricted primitiv
model (RPM), which in its simplest form corresponds to a
equal number of oppositely charged hard spheres, has b
the subject of numerous theoretical [1–5] and simulatio
[6–12] studies. While there is reasonable agreement b
tween the two most recent simulation studies [11,12], the
has been considerable variability in the estimated critic
parameters of this model. These inaccuracies can be
rectly attributed to computational and sampling difficultie
associated with simulations of this model. Additional dif
ficulties arise when one considers the lattice analog of t
RPM, where each charged site occupies exactly one latt
site [13]. Dickman and Stell [14] have found that there
a first-order transition between a disordered and an antif
romagnetically ordered phase at temperatures below a
critical point,Tc. AboveTc, there is a line of second-order
transitions between a disordered and an antiferromagne
phase. Clearly, the behavior of the lattice model is qua
tatively different from its continuous space analog. The
is a tricritical (rather than critical) point, and there is n
vapor-liquid transition.

To understand and resolve this discrepancy, we ha
focused on a class of lattice-based restricted primitiv
models for which the ratio of ion size to the lattice unit ce
dimension,j, is varied systematically. We find that, for
j # 2, the models yield coexistence between a disorder
and an antiferromagnetic phase as found previously
Dickman and Stell [14]. For larger, integer values o
j, a regular vapor-liquid coexistence occurs with critica
temperatures and densities approaching the continu
limit with increasingj. Forj $ 4, we find that the critical
temperatures are within 5% of their continuous spa
analogs, while the critical densities are virtually identica
These facts are particularly important since we can u
the advantages of a lattice model, i.e., larger simulatio
volumes and shorter computational times, to reprodu
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the continuous limit which has been difficult to simulat
accurately.

The lattice RPM model consists of an equal numb
N6 of positive and negative ions of diameters on a
simple cubic lattice of volumeV . The key idea in this
work is to start from thej � 1 model and systematically
refine the spacing lattice so that the model can appro
the continuous-space analog to an arbitrary degree.
models studied are schematically illustrated in Fig.
A two-dimensional projection is used for simplicity in
Fig. 1, even though all our calculations were for thre
dimensional systems. Forj � 1, a single lattice site is
excluded by each ion. Forj � 2, the total number of
excluded sites is 27 (a cube of size3 3 3 3 3) while
for higher j the shape of the excluded volume of eac
ion takes on an increasingly spherical shape. The num
of excluded sites is 93, 251, and 485, respectively,
j � 3, 4, and 5. The reduced densityr� is defined as
r� � 2N6s3�V . Since we describe the volume in unit

ξ=4

ξ=1

ξ=2

ξ=3

ξ=5

FIG. 1. Projection in two dimensions of the three-dimension
models studied. Two ions at contact are represented for e
case. The shaded cells fall within the excluded volume of t
ion at right.
© 1999 The American Physical Society 2981
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of s3, the quantity j is not utilized in the description of
r�. Consequently, r� � 1 always corresponds to a fully
filled lattice, independent of j. A reduced volume of V � �
V�s3 � 123 was used for all phase diagram calculations,
except near the critical points, for which volumes of 153,
193, and 243 were also used.

Coulombic interactions between ions are given by
U�r� � 61�r , for like and unlike ions, respectively,
where r is the distance, in units of s, between the centers
of the lattice sites occupied by each ion. An important
point here is that, since the Coulomb interactions are
long ranged, the potential calculations have to include
interactions with particles in all images of the periodic
box utilized in the calculations. A method to achieve this
in the case of electrostatic interactions is the Ewald sum,
which is described in detail in standard textbooks, e.g.,
[15]. An extremely fast table lookup algorithm equivalent
to an Ewald sum with a large number of Fourier-space
wave vectors was developed to compute the infinite-range
ionic interactions. The algorithm is analogous to that used
in [16] for investigating lattice systems with long-range
interactions. It involves precomputing the Coulomb
interaction between any two sites on the lattice, including
all periodic images of the sites to an infinite distance. The
summation is performed with the standard Ewald sum with
vacuum boundary conditions, 518 Fourier-space wave
vectors and real-space damping parameter k � 5. The
Ewald sum is performed only once, at the beginning of the
simulation, and the translationally invariant contributions
stored in an array. The relative acceleration for the lattice
calculations versus our earlier off-lattice calculations for
the RPM was a factor of at least 100.

We determined the phase coexistence of these solutions
by the histogram reweighting method [17,18]. For a
system of volume V in the grand canonical ensemble the
probability of its occurrence with energy E and number of
particles Np , f�Np , E�, is

f�Np , E� �
V�Np , V , E� exp�2bE 1 bmNp�

J�m, V , T �
. (1)

b � 1�kBT , m is the chemical potential, and J�m, V , T �
is the grand partition function. V�Np , V , E� is the mi-
crocanonical partition function. One performs a series
of grand canonical Monte Carlo simulations with a fixed
value of T and m in each one. Only ion pair additions
and removals were attempted, and, hence, m corresponds
to this elementary, charge neutral pair. To enhance accep-
tance of the insertion and removal steps for these strongly
interacting Coulombic systems, a distance-biasing algo-
rithm [10] was used. We used the Boltzmann factor of
the interaction energy of a pair at a given separation as the
distance-biasing factor. Combining the simulations yields
an estimate of V�Np , V , E� to within an arbitrary con-
stant, from which system thermodynamics are derived.

Our results for the first-order transition curves for
the j � 1 and j � 2 cases are shown in Fig. 2 as
2982
FIG. 2. Phase behavior of the j � 1 and j � 2 models.
Open circles are for the first-order transition for j � 1; filled
circles and dashed line are for the Néel line for j � 1. Open
triangles are for the first-order transition for j � 2, with large
uncertainties due to the presence of hysteresis loops.

open circles and triangles, respectively. In both cases,
coexistence is between a low-density disordered phase
and an antiferromagnetically ordered high-density phase.
The j � 1 results are quite similar to those of Dickman
and Stell [14], with the exception that our calculations
extend nearer to the tricritical point, for which our esti-
mate is T�

c � 0.15 6 0.01, r�
c � 0.48 6 0.02. This esti-

mate is based on a linear extrapolation of the coexistence
line, as expected for d � 3 tricriticality. Our estimate is
probably an upper bound to the true tricritical tempera-
ture, since it is based on small system size simulations.
The presence of a tricritical point in the j � 1 model has
been predicted from the theoretical analysis of Høye and
Stell [19]. The filled circles and dashed line indicate a
preliminary estimate of the Néel line of continuous tran-
sitions from disordered to antiferromagnetic structures,
obtained by locating a peak in the constant-volume heat
capacity at three temperatures. The line is nearly ver-
tical, while in the results of Dickman and Stell the line
has a lower slope, at least for T� $ 0.2. Detailed finite-
size scaling analysis will be required for resolution of the
exact location of the line of second-order transitions.

The j � 2 model presented special difficulties. There
was a range of chemical potentials over which hysteresis
loops were observed. Over that range, a run initiated
at low density would remain in an apparently stable
disordered low-density state even after 2 3 108 Monte
Carlo pair addition and removal steps. On increase of the
chemical potential outside the hysteresis region, it would
slowly convert to a nearly perfect antiferromagnetic high-
density state. Conversely, a run started from a high-
density ordered state would remain stable over a range of
chemical potentials overlapping with the range of stability
of the low-density state. Hysteresis loops are expected
whenever first-order transitions are present. However,
for the other cases studied in this paper, we were able
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to obtain the equilibrium coexistence curves with low
uncertainties by linking states on opposite sides of the
coexistence curve through simulations above a critical (or
tricritical in the case j � 1) point. In the case j � 2, the
critical or tricritical point occurs at very high densities,
r� $ 0.8. We were unable to obtain adequately sampled
states at these very high densities for constructing an
equilibrium free-energy surface. The first-order transition
density, however, is by necessity bounded from above and
below by the densities at the extremes of the hysteresis
loop. The midpoint density of the hysteresis loop is
shown in Fig. 2 as the low-density coexistence point, with
(large) error bars covering the range of hysteresis.

The two coexisting phases for the j � 2 model are
qualitatively similar to the disordered and antiferromag-
natically ordered states for j � 1, except for a shift of the
transition to higher densities. We suggest the following
physical reason for this shift. For the j � 2 model, dis-
placement of an ordered structure by a single lattice spac-
ing along any of the principal directions results in a new
structure incommensurate with the previous one. This is
not the case for the j � 1 model, for which displacement
by one lattice spacing does not change the overall struc-
ture, except for interchange of positive and negative ions.

Our results for j � 3, 4, and 5 are shown in Fig. 3,
together with previous calculations for the continuous-
space RPM [12]. Critical points for the lattice RPM
models were estimated using mixed-field finite-size scaling
methods [20], assuming that the systems belong to the
Ising universality class. In all cases, our results for the
critical distribution and for the system-size dependence
of the critical parameters were highly consistent with the
hypothesis of Ising criticality. The use of larger system
sizes than in previous continuous-space studies provides
a more stringent test of this assumption. Extrapolated
critical points for infinite system size and subcritical vapor-
liquid coexistence curves are shown on Fig. 3. Clearly,

FIG. 3. Phase behavior of the j � 3, 4, and 5 models
(diamonds, filled squares, and filled triangles, respectively) and
the continuous-space RPM (line).
the behavior of the lattice RPM models for the finely
discretized lattices is quite similar to the continuous-space
RPM. Already at j � 4, the difference in the critical
temperature is less than 5% and the critical density is
higher by an amount less than the combined simulation
uncertainties.

The solid-liquid coexistence of the continuous-space
restricted primitive model has been studied by Smit
et al. [21]. Liquid-solid phase coexistence was ob-
served above the triple point located at approximately
T� � 0.025. The solid phase that first forms from the
liquid at low temperatures has a body-centered-cubic
structure. Using these results for guidance, we expect that
the j $ 3 models will exhibit transitions to an ordered
phase over the temperature range of Fig. 2 at sufficiently
high densities. These liquid-solid transitions can be
considered a natural continuation of the order-disorder
transitions observed for j � 1 and 2, now shifted to
even lower temperatures. In essence, the absence of
liquid-vapor transitions for the j � 1 and 2 cases is
simply a manifestation of the tendency of the low-j
models to solidify before forming a “proper” liquid. This
situation has been seen previously in off-lattice models
with extremely short-range interactions [22] and lattice
models with weak long-range interactions [23], but not,
to the best of our knowledge, in systems with strong
long-range interactions. Dipolar hard sphere and sphero-
cylinder systems also do not have a liquid phase [24], but
the reason for the absence of a liquid is the formation of
chains in the low-density gas, rather than solidification.

The possible presence of both a normal critical and a
tricritical point in RPM-type models has been anticipated
on theoretical grounds by Ciach and Stell [25]. Our
numerical calculations provide support for this suggestion
for j $ 3. Since the densities at which this transition will
occur are likely to be greater than for j � 2, for which
we already encountered sampling difficulties, a complete
numerical confirmation of this suggestion will have to be
based on more efficient sampling methods than the ones
used in this work.

In summary, we have computed the phase diagrams
of a series of related lattice restricted primitive models.
For the coarsely discretized models, order-disorder tran-
sitions occur at sufficiently high temperatures to preempt
the normal vapor-liquid critical point. The phase behav-
ior of finely discretized models approaches that of the
continuous-space analog quite rapidly. However, even
finely discretized lattice models retain a large computa-
tional advantage over their continuous-space counterparts.
This opens up the possibility of detailed studies by simu-
lation of the phase and aggregation behavior of ionic so-
lutions beyond the restricted primitive model.
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