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Light-Induced Melting of Colloidal Crystals in Two Dimensions
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We demonstrate that particles confined to two dimensions (2D) and subjected to a one-dimensional
(1D) periodic potential exhibit a rich phase diagram, with both “locked floating solids” and smectic
phases. The resulting phases and phase transitions are studied as a function of temperature and potential
strength. We find reentrant melting as a function of the potential strength. Our results lead to universal
predictions consistent with recent experiments on 2D colloids in the presence of a laser-induced 1D
periodic potential.
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Landau’s order parameter expansion predicts that the
direct transition from a solid to a liquid should always be
first order [1]. In two dimensions (2D), however, fluctua-
tions can suppress the transition temperature so far below
its mean-field value that order parameter amplitude fluc-
tuations (except in the form of topological defects) play
no role, and Landau’s mean-field analysis is qualitatively
wrong. In this case a two-stage melting process mediated
by the unbinding of dislocations [2,3] and disclinations
[3] provides an alternative scenario with two successive
continuous phase transitions with an intermediate hexatic
phase instead of a single direct first order transition. A pe-
riodic embedding medium for the 2D solid (e.g., a crystal
substrate or a laser potential) leads to commensurability
effects and engenders an enormous variety of interesting
phenomena [4].

Colloids confined between glass plates [5,6] and para-
magnetic colloidal systems [7] provide ideal model sys-
tems for experimental studies of 2D melting. In these
systems individual particles can be imaged, allowing a
direct observation of topological defects and measure-
ment of real-space correlation functions. Murray et al. [5]
and Zahn et al. [7] have given strong experimental evi-
dence for a two-stage melting mechanism in such sys-
tems (because dislocations relax slowly, long equilibration
times are required [5]). Chowdhury et al. [6] studied 2D
colloidal suspensions subjected to a 1D periodic potential
provided by the standing wave pattern of two interfering
laser beams. They observed a phenomenon called “light-
induced freezing,” a solidification driven by a commen-
surate laser potential. Our research is motivated by the
recent work of Wei et al. [8], who reinvestigated this phe-
nomenon and discovered reentrant melting upon gradually
increasing the amplitude of the potential even farther.

Previous theoretical studies of this phenomenon have
used density functional theory [9] which gives essentially
the same results as Landau theory [6], namely, a change
from first to second order critical behavior with increas-
ing potential strength. Continuous melting is allowed be-
cause the external potential singles out density modes in
one direction and the relevant Landau theory then con-
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tains only even powers in the local Fourier components
of the density rG�r� � exp�iG ? r�. Unfortunately, the
applicability of mean-field-like theories to problems with
continuous symmetry in 2D is limited since these theories
drastically underestimate the effect of fluctuations. Re-
sults from Monte Carlo simulations are inconclusive: Al-
though earlier simulations [10] claimed to have found a
tricritical point at intermediate laser intensities and reen-
trance, recent studies from the same laboratory [11] refute
these results. We note that simulations with much larger
numbers of particles have still not completely resolved the
nature of 2D melting without an external potential [12].

In this Letter we take a different approach, building on
concepts developed in the context of dislocation mediated
melting theory [2,3]. We model the experimental system
by a continuum elastic free energy F � Fel 1 Fp , where
Fel �

1
2

R
d2 r�2mu2

ij 1 lu2
kk� is the elastic energy asso-

ciated with the colloidal displacement field u�x, y� rela-
tive to the equilibrium position in the unconstrained solid
characterized by the “bare” elastic constants m and l.
The quantity uij �

1
2 �≠iuj 1 ≠jui� is the 2D strain ma-

trix. The effect of the laser potential with troughs running
along the x axis is described by Fp �

R
d2 rU� y, uy�,

where U� y, uy� � 2U0a22 cos� 2p

d �uy 2 dy��. U0 mea-
sures the strength of the laser potential and the mean col-
loidal spacing a is related to the particle density r by r �
2�
p

3a2. A similar model was used to discuss modu-
lated superconducting films in Ref. [4].

Let a0 be the Bragg plane spacing for the orientation
of the colloidal crystal (relative to the troughs) which
produces the lowest free energy (see Fig. 1). Incom-
mensurability between a and the distance between the
troughs, d, is accounted for by the mismatch parameter
d � a0�d 2 p, where p is the integer closest to a0�d.

For d � 0, we can write U� y,uy� �

2U0a22 cos�Kp ? u�, where Kp �
2p

a0 pey is a recipro-
cal lattice vector of the unperturbed system. If U0 � 0,
there are algebraic Bragg peaks in the structure function
of the crystalline phase and MK � �rK� 	 1�LhK�2 ! 0
as the system size L ! `, where hK �

kBT
4p

3m1l

m�2m1l�K
2
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FIG. 1. Triangular lattice with lattice constant a subject to a
periodic potential (maxima indicated by dashed lines) for two
different relative orientations: (A) pAd � a0A with a0A �

p
3a�2

and pA � 2; (B) pBd � a0B with a0B � a�2 and pB � 1. Also
shown are low energy dislocations with Burgers vector b
parallel to the corrugation of the potential.

[3]. It is straightforward to show that MK then vanishes
for small U0 as MK 	 jU0j

hK��42hK� [13]. In contrast,
MK should always vanish linearly with U0 in the liquid
and hexatic phases [5,7] of the unperturbed colloid.
The laser potential will also induce long-range bond
orientational order in c6 � �e6iu�r�� [14]. The bond
order parameter c6 vanishes linearly with U0 in the
liquid, vanishes like a power of U0 in the hexatic phase
[c6 	 jU0j

6h6��42h6�, where h6 is the exponent describ-
ing the algebraic decay of bond order], and approaches a
nonzero constant as U0 ! 0 in the solid phase.

In our analysis of larger values ofU0, we shall also focus
on the commensurate case �d � 0�, where the spacing
a0 of the lattice planes parallel to the troughs equals an
integer p times d. In Fig. 1, two particularly interesting
orientations, denoted A and B, of the colloidal crystal
and laser potential are shown. Only dislocations with
a Burgers vector parallel to the troughs have the usual
logarithmically divergent energy. In orientation A, four of
the six fundamental Burgers vectors are disfavored by the
potential, which requires that they be attached to a semi-
infinite discommensuration string [4]. In orientation B,
all six fundamental Burgers vectors are disfavored. The
lowest energy Burgers vector parallel to the troughs has
length

p
3 a. At sufficiently low temperatures, the laser

potential is always relevant [3], leaving massless phonon
displacements ux along the troughs with massive out-of-
valley displacements uy . We call this ordered phase a
“locked floating solid” (LFS), reflecting its resistance to
strains associated with uy and its ability to accommodate
strains in ux . In reciprocal space, the LFS is characterized
by a structure function S�q� with a row of d-function Bragg
peaks atG

�n�
y � 2p

n
d �n [ Z� along the qy axis and power

law Bragg peaks off this axis (see Fig. 2).
Upon integrating out the massive uy modes and using

standard renormalization group methods [3,15] to elimi-
nate bound dislocation pairs in the LFS phase, we are left
with a free energy with temperature and potential strength
dependent effective elastic constants,

FLFS �
1
2

Z
d2 r
Keff�≠xux�2 1 meff�≠yux�2� . (1)

Because only dislocations with Burgers vectors parallel
to the troughs are important, the physics is described by
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FIG. 2. Schematic p � 1 phase diagram for orientations A
and B. Insets: schematic structure functions in the various
phases. The 3’s indicate delta-function Bragg peaks and
circles indicate algebraic peaks. Th indicates the transition
temperature from the hexatic to the liquid phase at U0 � 0.

an anisotropic scalar Coulomb gas or, equivalently, an
anisotropic 2D XY model. For p smaller than a critical
value pc we find that the LFS melts with increasing
temperature at

kBTm �

p
Keffmeff

8p
b2, (2)

via an unbinding of dislocations with Burgers vectors
b k ex before the laser potential which gives the mass
to the uy modes, becomes irrelevant (see below). For
T , Tm the correlation function CG�r� � �rG�r�r�

G�0��
for reciprocal lattice vectors with Gx fi 0 shows
power law decay CG�r� 	 j�meff�Keff�1�2x2 1

�Keff�meff�1�2y2j2hG�2. The structure function is
singular, S�q� 	 1�jq 2 Gj22hG , near the reciprocal lat-
tice vector G [3]. The exponents 
hG� are given in terms
of the elastic constants by hG � kBTG2

x�2p
p
Keffmeff.

Unlike conventional 2D melting [3], hG is universal at
the melting transition, and given by h

�
G � �G ? b�4p�2,

where b is the smallest allowed Burgers vector in the
trough direction [15]. For orientation A, b � a and the
exponent characterizing the algebraic order in the off-
axis peaks (see insets of Fig. 2) closest to the qy axis is
h

�
G � 1�4; for the next row of peaks with Gx � 4p�a,

one gets h
�
G � 1, consistent with the algebraic decay

observed in Ref. [8]. For orientation B, b �
p

3 a and the
six quasi Bragg peaks closest to the origin have different
power laws; peaks on the x axis have h

�
G � 1, whereas

the four off-axis peaks have h
�
G � 1�4. Just above the

melting temperature, we expect diverging translational
correlation lengths (defined by the widths of Lorentzian
peaks in the structure function) parallel and perpendicular
to the troughs jx 	 jy 	 exp�const�jT 2 Tmj1�2�.

To obtain the melting curve as a function of U0 we
calculate Keff and meff and use Eq. (2). We start from a
microscopic model with a screened repulsive Coulomb
interaction [16] V �r� � V0a exp�2kr��r , where the
screening length k21 is typically much smaller than a and
V0 depends on the dielectric constant, k, and the sphere
radius [8]. In such a dilute limit the two Lamé coefficients
are equal, l � m. Hence the Kosterlitz-Thouless melting
temperature in the absence of a laser potential �U0 � 0�
is simply given by [3] kBT0

m � ma2�6p . In the opposite
limit of infinite potential strength the effective free energy
simplifies to Eq. (1) with Keff � 3m and meff � m.
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Using Eq. (2), this gives kBT`
m �

p
3 ma2�8p �

1.3kBT0
m. One might have thought that the melting

temperature simply increases monotonically with U0 from
T0
m to T`

m. It turns out, however, that fluctuations in
the uy modes caused by lowering the potential strength
from infinity typically increase the melting temperature.
To see this, we integrate out the uy modes using the
screened Coulomb potential; to leading order in kBT�U0
and V0e2ka�U0, we find (for orientation A) [15]

meff � m

Ω
1 1

9�ka�2

64p2

µ
1 1

17
3ka

∂
kBT
p2U0

æ
, (3)

Keff � K

Ω
1 1

�ka�2

64p2

µ
1 2 8y 2

23 1 104y

3ka

∂
kBT
p2U0

æ
,

(4)

where y � V0e2ka�kBT , m �
3
8ykBTk2, and K � 3m.

Lowering the potential strength U0 always increases the
shear modulus, whereas the behavior of the compressional
modulus depends on the magnitude of y and ka. When
combined with Eq. (2), these expressions imply that the
melting temperature Tm increases with decreasing U0 for
ka * 5.6 (in Ref. [8], ka � 10),

Tm � T`
m

Ω
1 1

5��ka�2 2 31�
64p2

µ
1 1

13
3ka

∂
kBT`

m

p2U0

æ
, (5)

thus implying reentrant melting for a band of tempera-
tures as a function of potential strength (see Fig. 2).
For a more precise estimate of the phase boundary,
one would also need to determine the renormalization
of the effective elastic constants by phonon nonlin-
earities and by bound dislocation pairs. In general,
however, one expects only small downward renor-
malizations with increasing temperature [17] which
will not affect the existence of reentrant melting. For
small U0, we find that the melting curve has a univer-
sal shape Tm�U0� 2 Tm�0� 	 �ln�kBTm�U0��21�n with
n � 0.36963 . . . .

We now discuss the topology of the phase diagram for
larger values of the commensurability parameter p. As
illustrated in Fig. 3, for p . pc a floating solid (FS) with
two soft phonon modes [3] can intervene (barring a di-
rect first order transition) between the LFS and the liquid
phase. To determine pc, one must calculate the thermal
renormalization of the laser potential, defined by U0�s� �
U0s2 exp�2 1

2K
2
p�u2

y�.� � U0slp , where lp is a renormal-
ization group eigenvalue and the subscript “.” indicates
that the uy modes are integrated over a momentum shell
�L�s, L�. The potential becomes irrelevant at long wave-
lengths whenever lp , 0. The thermal average over the
uy modes requires an effective elastic long wavelength
free energy appropriate to the FS phase. Because the
laser potential breaks rotational symmetry, this coarse-
grained free energy contains six independent elastic
constants,
FFS �
Z
d2 r

Ω
2mu2

xy 1
1
2

lxxu
2
xx 1

1
2

lyyu
2
yy 1 lxyuxxuyy 1 2gu2 1 2auuxy

æ
, (6)
where u �
1
2 �≠xuy 2 ≠yux� is the local rotation angle in-

duced by the phonon displacements. The resulting ex-
pression for lp is rather complicated, with an implicit
dependence on the strength of the laser potential and the
temperature [15]. However, a useful estimate results from
neglecting the effect of the substrate on the elastic coef-
ficients and considering an isotropic elastic free energy.
For orientation A, one finds [3] lp � 2 2

4p

3
kBT
ma2p2 with

the effective elastic constant m � 2m�2m 1 l���3m 1

l�. In the dilute limit ka ¿ 1, relevant for many col-
loidal systems, we have m � l and the eigenvalue is
negative for T . Tdil

p , with m � 3m�2 and kBTdil
p �

9ma2�4pp2. When compared with the melting tempera-
ture of the LFS phase in the same limit of ka ¿ 1 for
weak potentials, kBT0

m � ma2�6p , we find that a win-
dow of the FS phase exists for p . pc � 3

p
3�2 � 3.7

for orientation A [18]. Note, however, that pc is not a
universal constant but implicitly depends on the strength
of the potential, pc�U0�.

For intermediate commensurate densities 1 , p , pc,
no FS phase exists, and the dislocation unbinding transi-
tion discussed above melts the LFS to a locked smectic
(LSm) phase. In the LSm phase the potential is relevant
and only one out of p possible troughs is preferentially
occupied by the colloidal particles. At higher tempera-
tures an Ising transition �p � 2� (more generally, p-state
clock model [19]) takes the system to a modulated liq-
uid phase. We expect the same type of reentrant behavior
for the LFS-LSm phase boundary as discussed above for
p � 1. However, the LSm-liquid phase boundary should
depend more weakly on the potential strength: Since the
shear modulus is zero in the LSm phase the reentrance
mechanism discussed above does not apply here.

For p . pc the laser potential becomes irrelevant
before the LFS melts (via a rougheninglike transition),
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FIG. 3. Schematic phase diagrams for (a) 1 , p , pc and
(b) p . p0

c . pc (for orientation A). Heavy lines indicate
phase transitions which are most likely of first order. Insets:
schematic structure functions.
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leading to the uniaxially anisotropic FS described by FFS
[Eq. (6)]. Melting of this uniaxial solid (with g � a �
0) has been studied in detail by Ostlund and Halperin
[20]. Because of the uniaxial anisotropy, there are two
different types of dislocations: type-I dislocations with
Burgers vector along a reflection symmetry axis of the
solid, and type-II dislocations at angles 6f0 with respect
to this axis. The laser potential in Fig. 1A is oriented
in such a way that type-I dislocations are parallel to the
troughs of the potential, interact more weakly, and will
therefore unbind first. This “type-I” melting transition
leads to a “floating smectic” phase (FSm) stabilized by
the potential such that it retains quasi-long-range order in
rG � exp�iG ? u� for G � 2pey�pd. We expect that a
FSm phase intervenes between a FS and the liquid if p is
sufficiently large (p $ p0

c � 4 [19]).
The novelty of this FS-FSm type-I melting is that, in

contrast to the similar melting of the LFS, the destruction
of translational order in ux by dislocations takes place in
the presence of a coupled “spectator” massless phonon
mode uy . To analyze this transition we proceed in the
standard way [3,19] by introducing type-I dislocations
into the elastic free energy and performing a duality
transformation on the resulting Coulomb gas Hamiltonian
to convert it into a modified Sine-Gordon model,

H �
Z
d2 r

Ω
j=hj2

2KI
2 g cos�a�h 1 ic��

æ
1 FFS�f� .

(7)

Here h�x, y� is a dummy field which when integrated out
in exp�2H�kBT � gives rise to a scalar Coulomb gas with
interaction strength proportional to KI . The quantity f is
the single valued part of the displacement fields, c�q� �
�lxyq2

y 2 �m 2 g�q2
x�uy�q��q2 and g � 2e2Ec�kBT with

Ec the core energy of type-I dislocations. The melting
temperature can be determined from the condition that the
renormalization group eigenvalue of g vanishes,

kBTFS-FSm �
a2

8p

µp
lxxm2 2 c

m2p
m1lyy

∂
, (8)

with suitable renormalized elastic constants. Here
m6 � m 1 g 6 a, and c is a dimensionless func-
tion of ratios of the FS elastic constants [15]. The
effect of the spectator phonon modes is to re-
duce the melting temperature. Just below TFS-FSm

we find for the renormalized stiffness KR
I �T � �

KR
I �TFS-FSm� �1 1 const�TFS-FSm 2 T �1�2�. Above

the melting temperature KI is zero, type-I dislo-
cations are unbound, and at long length scales the
elastic free energy describing the FSm phase is of the
form FFSm � 1

2

R
d2 r
Bx�≠xuy�2 1 By�≠yuy�2� with

Bx � �4gm 2 a2���m 1 g 2 a� and By � lyy 2

l2
xy�lxx . Note that Bx vanishes for g � a � 0 as one

would expect for a rotationally invariant 2D smectic. The
structure factor in the FSm phase exhibits power law singu-
larities at reciprocal lattice vectors Gn � 2pney�pd (for
2980
n fi p), with an exponent hFSm � kBTG2
n�2p

p
BxBy .

The FSm phase melts via a second dislocation unbinding
transition when hFSm $ 1�4.

We have only discussed potentials which are commen-
surate with the colloidal crystal. Sufficiently large incom-
mensurability favors the discommensurations attached to
Burgers vectors with an unfavorable orientation relative
to the troughs [4], and leads to a large variety of phase
transitions as a function of density at fixed trough spacing
which we will discuss in a future publication.
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