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Stability of Multihump Optical Solitons
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We demonstrate that, in contrast with what was previously believed, multihump solitary waves can
be stable. By means of linear stability analysis and numerical simulations, we investigate the stability
of two- and three-hump solitary waves governed by incoherent beam interaction in a saturable medium,
providing a theoretical background for the stability of the experimental results reported by Mitchell,
Segev, and Christodoulides [Phys. Rev. Lett. 80, 4657 (1998)].
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Self-guided optical beams, or spatial optical solitons
[1], are the building blocks of all-optical switching
devices where light itself guides and steers light without
fabricated waveguides. In the simplest case, a spatial
soliton is created by one beam of a certain polarization
and frequency, and it can be viewed as a self-trapped
mode of an effective waveguide it induces in a medium
[2]. When a spatial soliton is composed of two (or more)
modes of the induced waveguide [3], its structure becomes
rather complicated, and the soliton intensity profile may
display several peaks. Such solitary waves are usually
referred to as multihump solitons; they have been found
for various nonlinear models of coupled fields [4].

In realistic (nonintegrable) physical models, solitary
waves can become unstable demonstrating self-focusing,
decay, or a nonlinearity-driven transition to a stable
state, if the latter exists [5]. All these scenarios of
soliton evolution are initiated by exponentially growing
perturbations and they are attributed to linear instability.
It is usually believed that multihump solitary waves
are linearly unstable, except for the special case of
neutrally stable solitons in the integrable Manakov model
[6]. On the contrary, recent experimental results [7]
indicate the possibility of observing stationary structures
resembling multihump solitary waves. This naturally
poses a question: Were those observations possible
only because of short propagation distance and a small
instability growth rate? Definitely, the experimental
results challenge the conventional view on multihump
solitary waves in different models of nonlinear physics.

The purpose of this Letter is twofold. First, we study the
origin of multihump solitons supported by incoherent inter-
action of two optical beams in a photorefractive medium.
We find that multihump solitons appear via bifurcations of
one-component solitons and due to the process of hump
multiplication, when the intensity profile of a composite
soliton changes from single- to multihumped with increas-
ing power. Second, we perform numerical stability analy-
sis of two- and three-hump solitary waves and also find
analytically the instability threshold for two-hump solitons.
We reveal that two-hump solitary waves are linearly stable
in a wide region of their existence, whereas all three-hump
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solitons are linearly unstable, and that even linearly stable
multihump solitons may not survive collisions.

In the experiments [7], spatial multihump solitary
waves were generated by incoherent interaction of two
optical beams in a biased photorefractive crystal. The
corresponding model has been derived by Christodoulides
et al. [8], and it is described by a system of two coupled
nonlinear equations for the normalized beam envelopes,
u�x, z� and w�x, z�, which for the purpose of our current
analysis can be written in the following form [9]:
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where the transverse, x, and propagation, z, coordinates
are measured in the units of �Ld�k�1�2 and Ld , respec-
tively, Ld is a diffraction length, and k is the wave vector
in the medium. The parameter l is a ratio of the non-
linear propagation constants, and s is an effective satura-
tion parameter. For s ! 0, the system (1) reduces to the
integrable Manakov equations [6].

We look for stationary, z-independent, solutions of
Eqs. (1) with both components u�x� and w�x� real and
vanishing as jxj ! `. Different types of such two-
component localized solutions, existing for 0 , �l, s� ,

1, can be characterized by the total power, P�l, s� �
Pu 1 Pw , where the partial powers, Pu �

R`

2` juj2 dx
and Pw �

R`
2` jwj2 dx, are integrals of motion. If one of

the components is small, i.e., w�u � ´, Eqs. (1) become
decoupled and, in the leading order, the equation for
the u component has a solution u0�x� in the form of
a fundamental, sech-like, soliton with no nodes. The
second equation can then be considered as an eigenvalue
problem for the “modes” wn�x� of a waveguide created by
the soliton u0�x� with the effective refractive index profile
u2

0�x���1 1 su2
0�x��. Parameter s determines the total

number of guided modes and the cutoff value for each
mode, ln�s�. Therefore, a two-component vector soliton
�u0, wn� consists of a fundamental soliton and an nth-
order mode of the waveguide it induces in the medium.
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Henceforward we denote such a composite solitary wave
by its “state vector”: j0, n	.

On the P�l� diagram (for fixed s), continuous branches
representing j0, n	 solitons emerge at the points of bifur-
cations ln�s� of one-component solitons (see Fig. 1). It is
noteworthy that the first-order mode is in fact the lowest
possible mode of the waveguide induced by the fundamen-
tal soliton u0�x�. This is because the state j0, 0	, node-
less in both components, can exist only in the degenerate
case l � 1, when Eqs. (1) have a family of equal-width
solutions u0 � A�x� sinu and w0 � A�x� cosu, with arbi-
trary u, and amplitude A satisfying the scalar equation,
dA�dx � 6s21�log�1 1 sA2� 2 s�1 2 s�A2�1�2.

Additionally, indefinitely many families of vector soli-
tons jm, n	, where m fi n fi 0, can be formed as bound
states of phase-locked j0, n	 solitons [10,11]. Although
such states do contribute to the rich variety of the multi-
hump solitons existing in our model, we exclude them
from our present consideration.

Families of vector solitons can be found by the numeri-
cal relaxation technique. Some results of our calculations
are presented in Fig. 1, for j0, 1	 and j0, 2	 solitons found
at s � 0.8. Observing the modification of soliton pro-
files with changing l (see Fig. 1 inset), one can see that
the modal description of two-component solitons is valid
only near bifurcation points. For l ¿ ln, the amplitude
of an initially small w component grows and the soliton-
induced waveguide deforms. It is this purely nonlinear ef-
fect that gives rise to the existence of multihump solitons.
In particular, two- and three-hump solitons are members
of the soliton families j0, 1	 (branch A-B-C) and j0, 2	
(branch D-E-F) originating at different bifurcation points.
At l � ln�s�, while the w component remains small, all
j0, n	 solitons are single humped, as shown in Figs. 1(a)
and 1(d). As the amplitude of w grows with increasing

FIG. 1. Soliton bifurcation diagram for s � 0.8. Horizontal
line: Branch of the fundamental u soliton. A-B-C: Branch
of j0, 1	 solitons. D-E-F: Branch of j0, 2	 solitons. Inset:
Transverse profiles of u (thin line), w (dashed line) fields, and
total intensity (thick line), shown for marked points.
l, the total intensity profile, I�x� � u2
0�x� 1 w2

n�x�, de-
velops �n 1 1� humps [see Figs. 1(b) and 1(e)], and at
sufficiently large l the u component itself becomes multi-
humped [Figs. 1(c) and 1(f)]. The separation distance be-
tween the soliton humps tends to infinity as l ! 1.

To analyze the linear stability of multihump solitons,
we seek solutions of Eqs. (1) in the form of weakly
perturbed solitary waves: u�x, z� � u0�x� 1 ´�Fu�x, z� 1

iGu�x, z�� and w�x, z� � wn�x� 1 ´�Fw�x, z� 1 iGw�x, z��,
where ´ ø 1. Setting Fu,w � fu,w�x�ebz , Gu,w �
gu,w�x�ebz , one can obtain the following eigenvalue
problem (EVP)
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(2)
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Because L̂1L̂0 and L̂0L̂1 are adjoint operators with

identical spectra, we can consider the spectrum of only
one of these operators, e.g., L̂1L̂0. Considering the com-
plex L plane, it is straightforward to show that L [
�2`, 2l2� is a continuum part of the spectrum with
unbounded eigenfunctions. Stable bounded eigenmodes
of the discrete spectrum (the so-called soliton internal
modes [12]) can have eigenvalues only inside the gap,
2l2 , L , 0. The presence of either positive or com-
plex L implies soliton instability, because in this case
there always exists at least one eigenvalue of the soliton
spectrum with Reb . 0.

Numerical solution of the EVP (2) shows that both
j0, 1	 and j0, 2	 types of solitary wave solutions can be
stable in a certain region of their existence domain; see
Fig. 2. In the case of j0, 1	 solitons, the appearance of
the instability is related to the fact that close to the curve
where the total intensity I becomes two humped (dashed
line in Fig. 2), a pair of internal modes split from the
continuum into the gap. As l grows, the corresponding,
purely imaginary, eigenvalues b � 6i

p
jL�l�j tend to

zero, and at a certain critical value l � lcr �s�, they
coincide at b � 0. At this point, an eigenmode with
positive eigenvalue L emerges, thus generating linear
instability (see Fig. 3) with the instability growth rate
b �

p
L�l�. For j0, 2	 solutions, the dynamics of internal

modes cannot be related in any obvious way with a
change in the spatial solitary profiles; nevertheless the
scenario of the instability development is similar to that
for two-hump solitons. The dependence of b on l, for
j0, 1	 and j0, 2	 soliton families giving rise to two- and
three-hump solitary waves, is shown in Fig. 3 for s � 0.3
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FIG. 2. Existence and stability domains for two- and three-
hump solitons. Shown are the existence thresholds l1�s� and
l2�s� for the j0, 1	 and j0, 2	 soliton families. Dashed line: The
line where j0, 1	 solitons become two humped. Shaded area:
Analytically obtained instability domain for two-hump solitons.
Squares and circles: Numerically obtained instability thresholds
for j0, 1	 and j0, 2	 solitons, respectively.

and s � 0.8, respectively. A decline in the instability
growth rate as l ! 1 (see Fig. 3) is caused by the fact
that, in this limit, all multihump solitons decompose into
a number of the neutrally stable j0, 0	 solitons separated
by infinitely growing distance. Numerical analysis in the
close vicinity of this limit is unfeasible due to the lack of
computational accuracy.

Note that, within the gap of the continuous spectrum,
there exist several soliton internal modes not participating
in the development of the linear instability. Analysis
of their origin and influence on the soliton dynamics is
beyond the scope of the present Letter.

With the aid of an analytical asymptotic technique [13],
it is possible to show that a perturbation mode with a
small but positive eigenvalue, and therefore the linear
instability of a general localized solution �u, w�, appears

FIG. 3. Instability eigenvalues vs l for j0, 1	 and j0, 2	
solitons; dashed line: Imb, bold line: Reb.
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changes its sign. The threshold condition J � 0 is,
in fact, the Vakhitov-Kolokolov stability criterion [14],
generalized for the case of two-parameter vector solitons.
In this case, it does not necessarily give a threshold
of leading instability [15]. Therefore, the presence of
other instabilities (which are not associated with the
condition J � 0 and can have stronger growth rates) is
still possible, as in some other cases [16].

For two-hump solitons, we have been able to locate
the critical curve in the �l, s� plane corresponding to the
condition J � 0. Superimposing this curve onto the nu-
merically calculated values lcr �s�, we have found a re-
markable agreement between the numerical and analytical
instability thresholds, as shown in Fig. 2. This gives us
the first example of the generalized Vakhitov-Kolokolov
criterion for the instability threshold of vector multi-
hump solitary waves. For the whole family of j0, 2	 solu-
tions, including three-hump solitons, it appears that J fi 0
throughout the entire existence region. Thus, the appear-
ance of instability of three-hump solutions is not associ-
ated with the change of the sign of the functional J.

To analyze long-term evolution of multihump solitary
waves, we perform numerical simulations of the beam
propagation for j0, n	 solitons within the existence domain
ln , l , 1, at fixed s. First, we use no perturbation so
that the soliton instability can develop only from numerical
noise. As long as the soliton maintains its single-humped
shape [see corresponding profiles in Figs. 1(a) and 1(d)], it
remains almost insensitive to numerical noise. Moreover,
while the j0, 1	 solitons do become two humped at l ,

lcr , they still remain stable in a wide domain of their
parameters until the linear instability threshold is reached.
On the contrary, j0, 2	 solitons remain single humped up to
the instability threshold value l � lcr , so that all three-
hump solitons are indeed unstable. Above the instability
threshold (i.e., for lcr , l , 1), a two-hump soliton splits
into two independent single-humped beams as a result
of the instability developed from noise [see Fig. 4(a)],
whereas a three-hump soliton exhibits a more complex
symmetry-breaking instability, as shown in Fig. 4(b).

FIG. 4. Noise-induced splitting of (a) two-hump soliton
[Fig. 1(c)] and (b) three-hump soliton [Fig. 1(f )].
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FIG. 5. Collisions of (a) linearly stable j0, 1	 solitons at s �
0.8, l � 0.72 with the relative transverse velocity y � 0.05,
and (b) linearly stable j0, 2	 solitons at s � 0.8, l � 0.35, with
y � 0.09.

Next, we propagate two-hump (at s � 0.3) and three-
hump (at s � 0.8) solitons perturbed by an eigenmode
with the largest instability growth rates, i.e., bmax �
0.055 and bmax � 0.153, respectively. We find that in the
presence of �6% amplitude perturbation, the diffraction-
induced decay of a soliton can be stabilized by the
nonlinearity, whereas its splitting is significantly speeded
up by the perturbation, compared with splitting due to a
numerical noise.

To make a link between our stability analysis and ex-
periment, we note that for the experiment [7] the diffrac-
tion length is defined as Ld � 2�sb and photorefractive
nonlinearity of the medium is characterized by the pa-
rameter b � kreffn

2
bE0, where reff is the effective electro-

optic coefficient (� 280 pm�V), nb is the background
refractive index �� 2.3�, and E0 is the applied electric
field (�2 3 105 V�m). For strong saturation we have
s � 1 and Ld � 0.2 mm. Now, the characteristic insta-
bility length zcr can be defined through the maximum
growth rate bmax and, as a result, for two-hump solitons
at s � 0.3 we obtain zcr � 12.18 mm. These estimates
indicate that the instability, if it exists, could be detected
for two-hump solitons within the experimental setup of
Ref. [7] and therefore stable two-hump solitons have been
indeed observed.

Importantly, three-hump solitons so far generated in the
experiment belong to a different class of vector solitons
which, in our notation, can be identified as j1, 2	 states.
The extensive numerical analysis of soliton states j1, 2	
[11] shows that all such solitons are linearly unstable.
However, the observation of this instability is beyond the
experimental parameters of Ref. [7].

The complex structure of multihump solitons and the
nonintegrability of the model (1) result in a variety of
collision scenarios, which are quite dissimilar to the col-
lisions of multihump solitons of the exactly integrable
Manakov system [6]. For instance, even linearly stable
vector solitons do not necessarily survive soliton colli-
sions. In Figs. 5(a) and 5(b) we show two examples of
nonelastic interaction of linearly stable j0, 1	 and j0, 2	
solitons.
In conclusion, we have analyzed, analytically and
numerically, the stability of multihump optical solitons
in a saturable nonlinear medium. We have found that
multihump solitons are members of an extended class of
vector solitons which can be linearly stable in a wide
region of their existence, although they may be destroyed
in collisions. We believe that this is an important physical
result that calls for a revision of our understanding of
the structure and stability of many types of multihump
solitary waves in nonintegrable multicomponent models,
usually omitted in the analysis because of their a priori
assumed instability.
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