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Helical turbulence may provide the key to the generation of large-scale magnetic fields. Turbulence
also generically leads to rapidly growing small-scale magnetic fields. These two processes are usually
studied separately. We give here a unified treatment of both processes, in the case of random fields,
incorporating also a simple model nonlinear drift. We uncover an interesting plausible saturated state
of the small-scale dynamo and a novel analogy between quantum mechanical (QM) tunneling and the
generation of large-scale fields. A field generated by the small-scale dynamo, can “tunnel” to produce
large-scale correlations, which in steady state, correspond to a force-free “mean” field.

PACS numbers: 52.30.–q, 47.65.+a, 95.30.Qd
Large-scale magnetic fields in astronomical objects are
thought to be generated by dynamo action involving helical
turbulence and rotational shear [1,2]. Here large-scale
refers to scales much larger than the outer scale, say L,
of the turbulence. However, turbulent motions, with a
large enough magnetic Reynolds number (MRN), can also
excite a small-scale dynamo, which exponentiates fields
correlated on the tubulent eddy scale, at a rate much
faster than the mean field growth rate [1,3]. These two
dynamo problems, viz. the small-scale dynamo (SSD) and
large-scale dynamo (LSD), are usually treated separately.
However, this separation is often artificial; there is no
abrupt transition from the field correlated on scales smaller
than L and that correlated on larger scales. We show
here that the equations for the magnetic correlations, which
involve both the longitudinal and helical parts, are already
sufficiently general to incorporate both small- and large-
scale dynamos in the case of random fields. They provide
us with a paradigm to study the dynamics in a unified
fashion, which could be particularly useful to study a
possible inverse cascade of magnetic fields, to scales larger
than L.

Consider the induction equation for the magnetic field,

�≠B�≠t� � = 3 �v 3 B 2 h= 3 B� , (1)

where B is the magnetic field, v is the velocity of the fluid,
and h is the Ohmic resistivity. Take v � vT 1 vD , the
sum of an externally prescribed stochastic field vT , and
a drift component vD , which models the nonlinear back
reaction of the growing Lorentz force. We assume vT to
be an isotropic, homogeneous, Gaussian random velocity
field with zero mean. For simplicity, we also assume vT

to have a delta function correlation in time (Markovian
approximation). Its two point correlation is specified as
�yi
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Here � � denotes ensemble averaging, r � jx 2 yj, and
ri � xi 2 yi . TL�r� and TN �r� are the longitudinal
and transverse correlation functions for the velocity field
while C�r� represents the helical part of the velocity
correlations. If = ? vT � 0, TN � �1�2r�d�r2TL��dr .
(Note vT is also not correlated with the magnetic
field.)

To model the drift velocity in a tractable manner, but one
which nevertheless gives some feel for possible nonlinear
effects, we proceed as follows. As the magnetic field
grows, the Lorentz force pushes on the fluid. We assume
the fluid almost instantaneously responds to this push
and develops an extra “drift” component to the velocity
proportional to the instantaneous Lorentz force. So we
take a model vD � a��= 3 B� 3 B�, with the parameter
a � t�4pr, where t is some response time, and r is
the fluid density. (Such a velocity can also arise when
friction dominates inertial forces on ions, as in ambipolar
drift.) This gives a model nonlinear problem, where the
nonlinear effects of the Lorentz force are taken into account
as a simple modification of the velocity field. Such a
phenomenological modification of the velocity field has
in fact been used by Pouquet et al. [5] and Zeldovich
et al. [1] (p. 183) to discuss nonlinear modifications to the
alpha effect, and we adopt it below.

Consider a system, whose size S ¿ L, and for which
the mean field averaged over any scale is zero. Of course,
the concept of a large-scale field still makes sense, as
the correlations between field components separated at
scales r ¿ L can, in principle, be nonzero. We take B
to be a homogeneous, isotropic, Gaussian random field
with zero mean. This is a perfectly valid assumption
to make in the kinematic regime (vD � 0), as the sto-
chastic vT has these symmetries. When we include the
nonlinear drift velocity, it amounts to making a clo-
sure hypothesis, which we do here again for analytical
tractability. The equal-time, two point correlation of the
magnetic field is given by �Bi�x, t�Bj� y , t�� � Mij�r, t�,
where
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(Here � � denotes a double ensemble average over both the
stochastic velocity and stochastic B fields.) ML�r, t� and
MN �r , t� are the longitudinal and transverse correlation
functions for the magnetic field while H�r , t� represents
the (current) helical part of the correlations. Since = ?

B � 0, MN � �1�2r�≠�r2ML���≠r�.
The stochastic Eq. (1) can be converted into the evolu-

tion equations for ML and H. We give a detailed deriva-
tion of these equations elsewhere, including the effect of
the nonlinear drift [6]. We get
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where we have defined

kN � h 1 TL�0� 2 TL�r� 1 2aML�0, t� ,

aN � 2C�0� 2 2C�r� 2 4aH�0, t� , (6)

G � 24��TN�r�0 1 �rTL�0�r2� .

Here prime denotes a derivative with respect to r .
These equations form a closed set of nonlinear partial
differential equations for the evolution of ML and H,
describing, as we will see, both SSD and LSD action
for random fields. The effective diffusion kN includes
microscopic diffusion (h), a scale-dependent turbulent
diffusion [TL�0� 2 TL�r�], and nonlinear drift adds an
amount 2aML�0, t�, proportional to the energy density
in the fluctuating fields. Similarly aN represents a
scale-dependent a effect [2C�0� 2 2C�r�] and nonlinear
drift decreases this by 4aH�0, t�, proportional to the
mean current helicity of the magnetic fluctuations. This
modification to the a effect is the same as that obtained
in [1,5]. The G�r� term allows for the rapid generation of
magnetic fluctuations by velocity shear and the existence
of a SSD independent of any large-scale field [1,3].

First consider nonhelical turbulence, with C�r� � 0,
allowing solutions with H�r , t� � 0. This case has been
extensively studied for the kinematic case (a � 0), when
TL�r� has a single scale (cf. [1,3]) and by us for a model
Kolmogorov-type turbulence [6]. These studies show that
one has SSD action, and magnetic fields correlated on
scales up to the turbulent scale can be generated. In
the kinematic limit, kN and G are time independent.
One can then look for eigenmode solutions to (4), of
the form C�r� exp�2Gt� � r2pkN ML. This transforms
Eq. (4) for ML�r , t� into a time independent, Schrödinger-
type equation, but with a variable (and positive) mass,

2GC � 2kN
d2C

dr2 1 U0�r�C . (7)

The “potential” is U0�r� � T 00
L 1 �2T 0

L�r� 1 k
00
N�2 2

�k0
N �2��4kN � 1 2kN�r2, for a divergence-free ve-
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locity field. The boundary condition is C ! 0, as
r ! 0, `. Note that U0 ! 2h�r2 as r ! 0, while
U0 ! 2�h 1 TL�0���r2 as r ! `. The possibility of
growing modes with G . 0 obtains, if one can have
a potential well, with U0 sufficiently negative in some
range of r , to allow the existence of bound states, with an
“energy” E � 2G , 0.

Suppose we have turbulent motions on a single scale
L, with a velocity scale y. Define the magnetic Reynolds
number Rm � yL�h. Then one finds [3,6] that there is
a critical MRN, Rm � Rc � 60, so that for Rm . Rc,
the potential U0 allows the existence of bound states.
For Rm � Rc, G � 0, and this marginal stationary state
is the “zero” energy eigenstate in the potential U0 [7].
For Rm . Rc, G . 0 modes of the SSD can be excited,
and the fluctuating field correlated on a scale L grows
exponentially on the corresponding “eddy” turnover time
scale, with a growth rate GL 	 y�L [8]. To understand the
spatial structure of the fields, define w�r, t� � �B�x, t� ?

B� y, t�� � �1�r2�d�r3ML��dr, the correlated dot product
of the random field. For the SSD, w�r� is strongly peaked
within a region r � rd � L�Rm�21�2 about the origin for
all the modes, and for the fastest growing mode, changes
sign across r 	 L and rapidly decays with increasing r�L.
(For the marginal mode with G � 0, Rm is replaced by Rc.)
Note that rd is the diffusive scale satisfying the condition
h�r2

d 	 y�L. A pictorial interpretation of the correlation
function, due to the Zeldovich school (cf. [1,3]), is to think
of the field as being concentrated in “flux ropes” with
thickness of order rd ø L, and curved on a scale up to
	L, to account for negative values of w.

How does the SSD saturate? The back reaction, in
the form of a nonlinear drift, simply replaces h by an
effective, time dependent hD � h 1 2aML�0, t�, in the
kN term of Eq. (4). Suppose we define an effective
MRN, for fluid motion on scale L, by RD�t� � yL�hD�t�.
Then as the energy density in the fluctuating field, say
EB�t� � 3ML�0, t��8p, increases, RD decreases. In the
final saturated state, with �≠ML�≠t� � 0 (obtaining say at
time ts), ML, and hence the effective hD in (4) become
independent of time. Solving for this stationary state then
becomes identical to solving for the marginal (stationary)
mode of the kinematic problem, except that Rm is replaced
by RD�ts�. The final saturated state is then the marginal
eigenmode which obtains, when EB has grown (and RD

decreased) such that RD�ts� � yL��h 1 2aML�0, ts�� �
Rc 	 60. Also w�r� for the saturated state will be
strongly peaked within a region r � rd � L�Rc�21�2

about the origin, change sign across r 	 L, and then
rapidly decay for larger r�L. From the above constraint,
ML�0, ts� � yL��2aRc�, assuming h ø 2aML�0, ts�. So
at saturation,

EB�ts� �
3ML�0, ts�

8p
�

3
2

ry2

2
L�y

t

1
Rc

. (8)

Note that t is an unknown model parameter. If we were
to adopt t 	 L�y, that is the eddy turnover time, then EB
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at saturation is a small fraction 	R21
C ø 1 of the equipar-

tition value. Further suppose we intepret w�r� for the
saturated state in terms of the Zeldovich et al. picture
of flux ropes of thickness rd , curved on scale L, in
which a field of strength Bp is concentrated. In this
picture, the average energy density in the field EB 	
�B2

p�8p�Lr2
d�L3. Using r2

d�L2 � R21
c , and t 	 L�y,

we then have B2
p�8p 	 ry2�2, where, remarkably, the

R21
C dependence has disappeared, and BP has equiparti-

tion value. So the SSD could saturate with the small-scale
field having peak values of order the equipartition field,
being concentrated into flux ropes of thickness LR

21�2
c ,

curved on scale L, and an average energy density R21
c

times smaller than equipartition.
We now turn to consider the effect of helical correla-

tions. If a0 � 2C�0� fi 0, then one can see from Eqs. (4)
and (5) that new generation terms arise at r ¿ L, due to
the a effect, in the form �ML � . . . 2 4aTH and �H �
. . . 1 �r4�aTML�0�0�r4. Here aT � a0 2 4aH�0, t� and
the dot represents a time derivative. These couple ML and
H and lead to the growth of large-scale correlations. There
is also a decay of the correlations at r ¿ L, due to dif-
fusion with an effective diffusion coefficient, hT � h 1

TL�0� 1 2aML�0, t�. From dimensional analysis, the ef-
fective growth rate is GD 	 aT �D 2 hT �D2, for correla-
tions on scale 	D, as in the large-scale a2 dynamo. This
also picks out a special scale D0 	 hT �aT for a station-
ary state (see below). Further, as the SSD is simultane-
ously leading to a growth of ML at r , L, in general at a
faster rate y�L ¿ a0�D, the growth of large-scale corre-
lations can be seeded by the tail of the SSD eigenfunction
at r . L. The SSD generated small-scale field can thus
seed the large-scale dynamo. Indeed, as advertised, both
the SSD and LSD operate simultaneously when a0 fi 0
and can be studied simply by solving for one ML�r , t�.

The coupled time evolution of H and ML for a nonzero
a0 requires numerical solution. But interesting analytical
insight into the system can be obtained for the marginal,
stationary mode, with �≠ML�≠t� � �≠H�≠t� � 0. In
fact, both the kinematic and nonlinear dynamo problems
can be treated in a unified fashion. With H independent
of time, Eq. (5) implies 2kNH 1 aNML � 0, for any
solution regular at r � 0 and vanishing at r ! `. From
this, as r ! 0, 2hH�0, t� � 0, and hence H�0, t� � 0 for
a nonzero h, a result which also follows directly from the
evolution (conservation) of magnetic helicity [9]. So any
general nonlinear addition to the a effect which arises in
terms of H�0, t� has to vanish in a stationary state.

Now substitute H�r� � 2aN �r�ML�r���2kN �r�� into
(4) and define once again C � r2pkN ML. We get

2kN
d2C

dr2 1 C

∑
U0 2

4�C�0� 2 C�r��2

kN

∏
� 0 . (9)

We see that the problem of determining the magnetic field
correlations, for the marginal/stationary mode once again
becomes the problem of determining the zero-energy
eigenstate in a modified potential, U � U0 2 4�C�0� 2

C�r��2�kN . Note that the addition to U0, due to the
helical correlations, is always negative definite. So helical
correlations tend to make bound states easier to obtain.
When C�0� � 0, and there is no net a effect, the addition
to U0 vanishes at r ¿ L, and U ! 2hT �r2 at large r ,
as before. The critical MRN for the stationary state will,
however, be smaller than when C�r� 
 0, because of the
negative definite addition to U0.

When a0 � 2C�0� fi 0, a remarkable change occurs in
the potential. At r ¿ L, where the turbulence velocity
correlations vanish, we have U�r� � 2hT �r2 2 a

2
0�hT .

So the potential U tends to a negative definite constant
value of 2a

2
0�hT at large r (and the effective mass,

1�2kN ! 1�2hT , a constant with r). There are strictly
no bound states, with zero energy/growth rate, for which
the correlations vanish at infinity. We have schematically
illustrated the resulting potential U in Fig. 1, which is a
modification of Fig. 8.4 of Zeldovich et al. [1]. In fact,
for a nonzero a0, U corresponds to a potential which
allows tunneling (of the bound state) in the corresponding
quantum mechanical (QM) problem. It implies that the
correlations are necessarily nonzero at large r . L. The
analytical solution to (9) at large r ¿ L is easily obtained.
We have for r ¿ L, ML�r� � M̄L�r�,

M̄L�r� �
1

r3�2 �C1J3�2�mr� 1 C2J23�2�mr�� , (10)

where m � a0�hT � D21
0 , and C1, C2 arbitrary con-

stants. Also w�r� � w̄�r� � mr21�C1 sinmr 1 C2 cosmr�.
Clearly for a nonzero a0, the correlations in steady state at
large r are like “free-particle” states, extending to infinity.

An alternate derivation of M̄L�r�, for the kinematic
case, clarifies its meaning further. Suppose one thinks
of the large-scale field as a “mean” field B0, the mean
taken over cells much larger than L. Assume B0 itself

FIG. 1. Schematic illustration of the potential U�r� for the
marginal mode in helical turbulence. A nonzero a0 allows
the tunneling of the zero-energy state to produce large-scale
correlations.
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is random over different cells, statistically homogeneous
and isotropic, with a correlation �B0iB0j� � ML

ij�r�. Let
ML

L , ML
N , and HL be, respectively, the corresponding

longitudinal, transverse, and helical correlations. Then B0
in each cell obeys the kinematic, mean field dynamo equa-
tion �≠B0�≠t� � = 3 �a0B0 2 �h 1 TL�0��= 3 B0�,
whose steady state solution is = 3 B0 � m0B0, where
m0 � m�a � 0�. This constraint, imposed on ML

ij , gives
HL � 2m0ML

L�2 and �ML
L 2 ML

N ��r2 2 �ML
N �0�r �

m
2
0ML

L �2. Also as = ? B0 � 0, ML
N � �1�2r� �r2ML

L �0.
These three equations fix all the functions uniquely. We
get, remarkably, ML

L �r� � M̄L�r�, with m replaced by the
kinematic value m0. So this solution actually describes a
random mean field, for the marginal large-scale dynamo.
Similarly if we had imposed = 3 B0 � mB0, ML

L would
be given by Eq. (10). Note this also shows that the
effective, steady state, large-scale field B0 is force-free,
although B itself is not.

It is straightforward to connect the large-scale, force-
free field for the marginal mode of helical turbulence,
with the SSD generated field, as they are both the solution
of the same Eq. (9), for large and small r , respectively.
For example, one can integrate Eq. (9), adopting different
starting values of ML�0, ts� and taking M 0

L�0, ts� � 0 to
construct a whole family of solutions [parametrized by
ML�0, ts�], which match small-scale correlations with the
large-scale correlation of (10). For each such solution,
we will have one value of C1�C2. Note that this is unlike
the standard QM tunneling problem, where the boundary
condition that the free-particle state is an outgoing wave
at large r uniquely fixes the tunneling amplitude, for a
given bound state. However, when we consider a zero-
energy, stationary state, there is no such natural time-
asymmetric boundary condition; so there is no unique fix
for C1�C2 in (10). Nevertheless, if ML�0, ts� is so small
and RD so large that U admits bound states with energy
E , 2a

2
0�hT , then the corresponding time dependent

system is unlikely to lead to stationary correlations. This
sets a lower bound on ML�0, ts� or EB. Further as
�ML�0, t� � . . . 1 16H2�0, t�, the saturation of ML�0, t�

depends on how fast H�0, t� ! 0, its stationary value,
over and above the saturation effects of the increasing
diffusion hD . So the full time dependent problem needs
to be solved to fix an upper bound on ML�0, ts� or EB

[10]. We will return to this elsewhere.
In conclusion, we have given here a unified treatment

of small- and large-scale dynamos for the case of random
fields, incorporating also a simple model nonlinear drift.
We uncovered an interesting plausible saturated state of
the small-scale dynamo. For random fields, we argued
that any nonlinear addition to the a effect in terms of the
average current helicity H�0, t� (cf. [1,5]) has to vanish in
2960
a steady state. The steady state problem of the combined
small-/large-scale dynamo was then mapped to a zero-
energy, QM potential problem; but a potential which,
for a0 fi 0, allows tunneling of bound states. A field
generated by the SSD, can then “tunnel” to seed the
growth of large-scale correlations, which in steady state,
correspond to a force-free mean field. It remains to solve
the fully time dependent system and to incorporate more
realistic back-reaction effects of the Lorentz force.
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