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Large Dispersive Effects near the Band Edges of Photonic Crystals
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We have used phase-sensitive ultrashort-pulse interferometry to study the modification of optical
pulse propagation near the photonic band edges in colloidal crystals consisting of polystyrene spheres in
water. A strong suppression of the group velocity is found at frequencies near the L gap of the fcc lat-
tice. The group velocity dispersion diverges at the band edges and shows branches of both normal dis-
persion and anomalous dispersion, which can be interpreted as large changes in the effective mass, both
positive and negative. We obtain excellent agreement with the dynamical diffraction theory.

PACS numbers: 42.70.Qs, 78.47.+p, 82.70.Dd
The propagation of electromagnetic radiation in three-
dimensional (3D) periodic dielectric structures is strongly
modified if the wavelength of the radiation is on the or-
der of the lattice spacing. Such structures are called pho-
tonic crystals [1]. Their periodicity gives rise to photonic
band structures in a way that is analogous to electronic
band structures. Frequencies for which there are no corre-
sponding wave vectors for propagation in a given direction
are in the stop gap. These waves satisfy the Bragg condi-
tion and will be diffracted. Much of the recent interest in
photonic crystals stems from the possibility of making lat-
tices for which there exists a range of frequencies in which
waves cannot propagate in any direction in the crystal
[1–3]. Such a photonic band gap occurs when the cou-
pling between light and lattice is sufficiently strong. This
has thus far not been accomplished for optical wave-
lengths. If a lattice could be constructed with a photonic
band gap at optical frequencies this would result in spec-
tacular effects such as the inhibition of spontaneous emis-
sion [2] and localization of light [3].

Experimental investigations of the propagation of light
in photonic crystals have largely been limited to mea-
surements of transmission [4–7] or reflection spectra [8].
Two interferometric experiments have been done which
measured small changes in the phase velocity in photonic
crystals [9,10]. While these techniques are very useful to
determine the presence of stop gaps they do not provide
full information on the light propagation through the
crystal. Time-resolved experiments are essential to reveal
the dynamics of the electromagnetic fields in the photonic
crystal. In one-dimensional (1D) multilayer systems,
pulsed-laser experiments have demonstrated extremely
short tunneling times at in-gap frequencies [11,12], as well
as very low group velocities at near-gap frequencies [13].
Pulse slowing was also seen in a synthetic opal [14]. For
three-dimensional crystals, fascinating predictions have
been made of dynamical effects such as localized photon
states [3] and nonlinear interactions leading to optical
bistability [6], gap solitons [15], and optical limiting and
switching [16].

In this Letter, we present time-resolved measurements
of a three-dimensional optical photonic crystal. Phase-
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sensitive ultrashort-pulse interferometry [17] is used to
probe the modification of light propagation close to the
band edges of a colloidal crystal, where the dispersion re-
lation v�k� between frequency v and wave vector k of a
propagating wave becomes nonlinear. The time-resolved
experiments enable direct and independent measurements
of the group velocity yg � dv�dk of a pulse and of the
group velocity dispersion (GVD), quantified by the pa-
rameter b2 � d2k�dv2, of the same pulse. The GVD
can be interpreted as being inversely proportional to an
effective photon mass, in analogy to electronic band struc-
tures. This property has never been measured in photonic
crystals. We find strong divergences in both the pulse
delay and the GVD at frequencies near the stop gap at
the L point of the face-centered cubic lattice, in excel-
lent agreement with the dynamical diffraction theory [18].
Such behavior has not even been observed before in one-
dimensional systems, where pulse delays are seen to os-
cillate just outside the gap and to be small and nearly
constant inside it [19] due to the small number of repeat-
ing units. Because the diverging quantities are associated
with the band edges, measurements such as these will be-
come an important tool in accurately characterizing the
band gaps. This is critical for determining whether or not
a candidate crystal possesses a photonic band gap.

The photonic crystals consisted of deionized suspen-
sions of polystyrene spheres in water. The sphere diame-
ter was 222 nm. Suspensions of volume fraction 20%
were put in flat glass capillaries with a path length of
0.4 mm. Some crushed beads of ion exchange resin were
also added. The negatively charged spheres ordered into
a face-centered cubic lattice with the (111) planes parallel
to the glass surface, as shown by x-ray diffraction [20].
The diffraction angles of wavelengths in the tuning range
of our laser are close to 180±. Because of gravitational
compaction, the lattice constant varies slightly with the
height in the capillary. Therefore, all measurements were
done on the same position.

Phase-sensitive time-resolved interferometry [17] was
used to study pulse transmission through the photonic
crystals. This technique measures the interferometric
cross correlation function of a laser pulse transmitted by
© 1999 The American Physical Society
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the sample with the incoming pulse. We used bandwidth-
limited ultrashort pulses (70–100 fs) from a Ti:sapphire
laser (Spectra Physics Tsunami), tunable from 720 to
835 nm, with a repetition rate of 82 MHz. First, a double-
pulsed signal is obtained with a Mach-Zehnder inter-
ferometer in which the reference arm is empty and the
sample arm contains the sample. A sample area of 1 mm
was illuminated at normal incidence. The power inci-
dent upon the sample was �0.1 W, low enough to avoid
nonlinear optical effects. The sample capillary was index
matched in a 1 cm optical glass cuvette filled with glyc-
erol to avoid refraction by the capillary. The sample and
reference beams emerging from the interferometer were
carefully overlapped. This produced a pair of pulses: an
undisturbed pulse followed by a pulse transmitted by the
sample. Their separation DL is the difference in the op-
tical path lengths of the two arms of the interferometer.
This beam is sent into a FTIR spectrometer (Biorad FTS-
60A). The FTIR uses a Michelson interferometer to ob-
tain the field autocorrelation function of the pulse pair by
scanning the time delay t between two copies of the pair.
The intensity detected with a Si diode contains interfer-
ence fringes whenever t is such that two pulses overlap.
This happens if t � 0 or if t � 6DL�c, with c the speed
of light. Near t � 0 the sample pulse overlaps with its
own copy and so does the reference pulse. The measured
function is then the sum of the field autocorrelations of the
two pulses. Near t � 6DL�c one copy of the sample
pulse overlaps with one copy of the reference pulse. This
produces the cross correlation function of the two fields,
which contains both spectral and phase information of the
pulse transport through the sample.

A typical measurement is shown in Fig. 1. Because
the interferograms are symmetric, only the part where
t . 0 is shown. In the lower interferogram the sample
beam passed through the glycerol but not through the
crystal. The cross correlation function appears at a delay of
1.75 ps, introduced by the path length difference between
the interferometer arms. The cross correlation function
is “filled” with fringes (see inset) that correspond to the
electromagnetic field oscillations. Translating the crystal
into the beam produces the interferogram in the upper
part of Fig. 1. The center frequency was chosen slightly
below the stop gap and this leads to a number of dramatic
changes. The low sample transmissivity close to the stop
gap causes an attenuation, cf. Fig. 2(a). A delay Dt

has been induced, and the cross correlation has increased
in width and become asymmetric. Close inspection of
the oscillations showed that the cross correlation has
developed a chirp: oscillations near the tail are slightly
faster than near the front. All these changes become
less pronounced if the frequency is tuned away from the
stop gap.

In Fig. 2(b) the time delays are plotted versus the central
frequency of the incoming pulse. Dt is the time delay
introduced by the crystal plus the capillary minus an equal
distance of glycerol, and can therefore be negative. For
FIG. 1. Interferograms measured with (top) and with-
out (bottom) the crystal. Pulses are incident perpendicu-
lar to the (111) planes. Their central frequency of
v0 � 2.33 3 1015 rad�s (808 nm) is slightly below the
L gap. The vertical dotted lines mark the time delay Dt
between the centers of mass of the cross correlations. Data in
the upper panel was multiplied by 5 starting from the arrow
position. Data are sampled every 0.26 fs so that individual
fringes are resolved (inset).

comparison, the sample transmission spectrum, measured
in the FTIR with a white light source, is shown in Fig. 2(a).
The data clearly demonstrate a large decrease of the group
velocity near the edges of the stop gap. The largest time
delay measured corresponds to a pulse propagation speed
of only about 80% of that far from the gap. This means
that the pulse sees an increased effective path length due
to multiple reflections in the crystal.

To describe the data in Fig. 2(b) we used the dynamical
diffraction theory, originally developed for x-ray diffrac-
tion [18]. In its usual formulation, this theory approxi-
mates the displacement field in the crystal by the two
strongest Fourier components: the incoming and diffracted
waves. The theory yields a dispersion relation v�k� that
can be differentiated to obtain the group velocity. The in-
put parameters are the refractive indices of water (1.33)
and polystyrene (1.59), as well as the particle diameter
(222 nm) and the lattice spacing. The (111) lattice spac-
ing is fixed independently by requiring that the predicted
location of the stop gap coincides with the center of the
transmission minimum. This yielded a value of 284 nm.
With all the parameters fixed, the time delay was calcu-
lated for a 0.4 mm crystal, and an offset was added to al-
low for the capillary and glycerol. The result is shown
in Fig. 2(b). The dynamical diffraction theory is seen to
describe the data very well. It gives an average refractive
index of 1.372 and a relative gap width of 0.032. As an in-
dependent check we measured the wavelength-dependent
diffraction angle corrected for Snell’s law. At 633 nm the
crystal was observed to have a diffraction angle of 54.2±,
from which we derive a lattice spacing of 286 nm and an
average refractive index of 1.366, in agreement with the
values above. It has been predicted [21] that crystals with
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FIG. 2. (a) Transmission spectrum of the photonic crystal.
(b) Measured pulse delay times (Dt, circles) near the L
gap versus the central frequency of the incoming pulses.
(c) Measured group velocity dispersion parameter (b2, circles).
The lines in (b) and (c) represent the dynamical diffraction
theory [18].

high-index spheres in a low-index background are best ap-
proximated by expansion of the displacement field as op-
posed to the electric field. Indeed, an analogous theory that
keeps the two strongest components of the electric field
[22] did not describe the data as well. Even though the
measurements explore only one set of lattice planes, one-
dimensional models do not describe the data as well as the
3D dynamical diffraction theory. The best mapping of the
real 3D crystal onto a 1D multilayer stack was obtained
with the model of Lidorikis et al. [23], which also needs
no adjustable parameters. This model gives a reasonable
correspondence to the data, but the gap width is off by
40%, which then results in differences with the measured
delay times.

The arrival time of the pulses was taken here as the
center of mass of the cross correlation function. However,
if the frequency comes very close to the band edges the
transmitted pulse shape is distorted (as in Fig. 1). It then
becomes uncertain how to take the time delay so that
it corresponds best to the group velocity. For example,
taking the time delay at the maximum of the cross
correlation makes the Dt values closest to the divergence
come out 0.06 ps smaller, while data farther away are
unaffected. This does not change the qualitative behavior
displayed by Fig. 2(b), but it does demonstrate the well-
known fact that the pulse propagation velocity becomes
different from the group velocity whenever significant
pulse reshaping takes place [24,25].
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A quantity that is unambiguous when pulse reshaping
takes place is the group velocity dispersion, because it
quantifies the relative phase shift of the frequencies in the
wave packet, which does not depend on its overall shape.
The phase information is contained in the fringes of the
cross correlation function [17,26]

C�t� �
1

DT

Z DT�2

2DT�2
E�

ref�t�Esample�t 2 t� dt . (1)

The laser’s repetition timeDT is much longer than the
pulse duration. The complex Fourier transform of C
can be divided by the same object measured without the
sample C0 to obtain the complex transmission function of
the sample H�v�:

C�v�
C0�v�

�
Esample�v�

Eref�v�
� H�v� . (2)

This procedure also divides out the small dispersion of
the lenses and the glycerol. The modulus and argument
of H�v� are the field transmissivity t�v� and the relative
phases of the frequencies in the pulse. We can write

H�v� � t�v�eik�v�L, (3)

where, for a crystal with length L, the phase shift is
governed by the Bloch wave vector k. Thus, from a
single interferogram we obtain the dispersion relation over
the frequency range covered by the pulse bandwidth.
Its deviation from linearity is analyzed with a Taylor
expansion around the pulse’s central frequency v0:

k�v� � k�v0� 1 b1�v 2 v0�

1
1
2 b2�v 2 v0�2 1 . . . . (4)

The coefficients b1 � �dk�dv�jv0 and b2 �
�d2k�dv2�jv0 are the inverse group velocity and the
group velocity dispersion, respectively.

This procedure is illustrated using the cross correlations
in Fig. 1. The (normalized) moduli of their Fourier trans-
forms are shown in Fig. 3. The spectrum of the sample
has become slightly asymmetric and its maximum is
shifted to lower frequency. This is because, although the
sample spectrum is attenuated as a whole, the frequen-
cies closer to the stop gap are attenuated more strongly.
Also shown is the argument of H�v� with a term
linear in frequency subtracted to make the curvature
visible. The parabolic shape reflects the fact that higher
frequencies have propagated more slowly through the
crystal than lower frequencies. A slight asymmetry can
also be seen, indicating that the GVD increases towards
higher frequencies, where the stop gap is located. Both
the dispersion-induced chirp and the asymmetry of the
transmitted spectrum contribute to the asymmetric pulse
broadening that was observed in Fig. 1.

The GVD parameter b2 and cubic coefficient b3 were
obtained from a polynomial fit of the argument of H�v�.
The b2 values are shown in Fig. 2(c). If the pulse
frequency comes to within a few percent of the band
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FIG. 3. Moduli of the complex Fourier transforms of the cross
correlation functions of Fig. 1. The sample spectrum (solid
line) has become slightly asymmetric and has shifted to a lower
frequency than that without sample (dashed line). Both spectra
were normalized to unity (the sample spectrum was 6 times
weaker). The phase of the complex transmission function H�v�
is the difference between the arguments of the two Fourier
transforms (open circles).

edges the GVD diverges. The measured values are 2 to
3 orders of magnitude larger than well-known values for
ordinary glass. At the high-frequency side of the stop gap
we find a branch of anomalous dispersion. This is quickly
recognized in an experiment because the argument of
H�v� becomes a parabola pointing up instead of down.
The cubic coefficient (not shown) was found to be positive
again on both sides of the gap. The line in Fig. 2(c) is
b2 calculated from the dynamical diffraction theory by
taking the second derivative of k with respect to v, using
the same parameter values as before. Again, the data
are described remarkably well by this theory. In analogy
to electrons in semiconductors, our measurements can be
interpreted as large effects on the effective photon mass,
which is negative below and positive above the gap.

The time delay and the GVD result from independent
measurements, but in order to be consistent they must
be related as d�Dt��dv � d�L�yg��dv � Lb2. It was
verified that b2 calculated from the time delays by
numerical differentiation indeed agrees with the measured
values within experimental accuracy.

It is interesting to note that the measured dispersive
effects are equally pronounced on both sides of the stop
gap. Typical photonic crystals, in contrast, generally
transmit much less on the high-frequency side of the gap
than on the low-frequency side [see Fig. 2(a)]. This is
usually attributed to lattice defects, which scatter higher
frequencies more efficiently. These defects, therefore, do
not affect the group velocity and GVD.

The large dispersive effects of the band edges that we
measured make it possible to locate these edges very
accurately. Although the low transmission did not permit
measurements inside the stop gaps (but these may be
done in reflection), the group velocity dispersion should
rapidly decrease to zero there because the real part of k is
constant. Thus we predict that, given a pulse frequency
inside a stop gap, rotating the crystal will result in a large
dispersion only close to a band edge, and should give
no dispersion at all angles if the crystal has a complete
photonic band gap.
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