
VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999
Second Harmonic Generation of Femtosecond Pulses at the Boundary of a Nonlinear Dielectric
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Using full vector Maxwell simulations we elucidate a fundamental source of temporal splitting of
the second harmonic field generated by a femtosecond fundamental pulse under phase-mismatched
conditions. One component of the generated field propagates at the second harmonic group velocity
while the other is driven by the fundamental field and propagates at the fundamental group velocity.
We analyze the conditions under which the temporal splitting should be observable.

PACS numbers: 42.65.Ky, 03.50.De
Although almost 40 years have passed since Franken
and co-workers [1,2] first demonstrated second harmonic
generation (SHG) and rectification of light, the topic of
SHG, in particular, of short pulses, continues to receive
much attention, especially in phase-matched and quasi-
phase-matched conditions [3–6], because of significant
applications. Most papers use the slowly varying enve-
lope approximation to discuss the growth of the second
harmonic amplitude, starting from zero at the boundary
of the nonlinear crystal (z � 0). This approach would
be strictly valid if the dielectric constant would slowly
increase over many optical wavelengths eliminating re-
flection. It is well known that rigorous solutions of
Maxwell’s equations at a sharp boundary with a discon-
tinuity in the linear and nonlinear susceptibilities require
the presence of both reflected and transmitted fields.

Rigorous solutions for second harmonic fields valid
in steady-state conditions (very long pulses) were given
by Bloembergen and Pershan [7] shortly after the initial
experiments. It was shown that the total second harmonic
field consists of a reflected wave in the linear medium (usu-
ally air or vacuum) and two transmitted waves in the non-
linear medium which respectively represent the solutions
of the homogeneous and the inhomogeneous wave equa-
tions. The latter is driven by the nonlinear polarization and
has a wave vector 2 �k1 equal to twice the wave vector of the
fundamental wave in the nonlinear medium. The homo-
geneous solution has a wave vector j �k2j � 2vn�2v��c,
where n�2v� is the index of refraction at the second har-
monic frequency. For normal incidence the interference
between the homogeneous and inhomogeneous solution
leads to the occurrence of Maker-Terhune fringes in the
second harmonic intensity as a function of the distance z
traveled in the nonlinear medium [8]. For large angles
of incidence the beams corresponding to the homogeneous
and inhomogeneous solutions are separated in space for
non-phase-matched conditions [9].

Recently exact solutions have been obtained for a fem-
tosecond pulse incident from vacuum onto a nonlinear di-
electric with a phase mismatch between fundamental and
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second harmonic caused by birefringence [10]. Using nu-
merical simulations based on the full vector Maxwell equa-
tions, we elucidate in this Letter a fundamental source of
temporal splitting of the second harmonic field generated
using ultrashort pulses which extends beyond the regime of
the usual slowly varying envelope approximation. In the
early stages before pulse splitting the two second harmonic
components beat together in space to yield the Maker-
Terhune fringes, whereas these components separate for
long distances. We show that this phenomenon should be
observable with current lasers and materials.

For the sake of concreteness consider the experimental
situation shown in Fig. 1. For sufficient phase mismatch
the second harmonic intensity always remains very small
compared to the fundamental intensity, and we hereafter
assume the fundamental is undepleted. The fundamental
pulse is polarized along the �1, 1, 0� crystallographic axis
labeled as the x direction of a KDP crystal, and induces

FIG. 1. The incident pulse on the KDP is polarized as an
ordinary ray. It creates a nonlinear polarization along the
optic axis.
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a nonlinear polarization along the �0, 0, 1� or y direction,
i.e., parallel to the optic axis,

PNL
y � e0x �2�E2

x . (1)

The pulses propagate along the crystallographic �1, 1̄, 0�
or z direction. Assume initially that there is no color
dispersion: This is clearly not realistic, but the conse-
quences of dispersion will be discussed later. In this case
the induced nonlinear pulse satisfies the wave equation (we
assume one spatial dimension z, i.e., plane waves, or alter-
natively we ignore diffraction, j �kT j ø kz , where �kT and kz

are transverse and longitudinal wave vectors, respectively,
and treat each transverse dimension separately)
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with

PNL
y �z, t� � e0x �2�A2

xf2�t 2 z�yx� (3)

and yy � c�njj�2v� � c�njj�0�. Note that all quantities
are real. The fundamental pulse in the medium has
an amplitude Ax and a shape f�t 2 z�yx� with yx �
c�n��v�. The nonlinear source term has a shape f2�t 2

z�yx� which propagates at the fundamental velocity yx . A
special solution of the inhomogeneous Eq. (2) is

Einh
y �z, t� �

x �2�A2
x

n2
� 2 ejj

f2�t 2 z�yx� . (4)

The homogeneous equation, when the right hand side in
Eq. (2) is put equal to zero, has a general solution

Ehom
y �z, t� � AT

y gT �t 2 z�yy� (5)

with arbitrary amplitude AT
y . The reflected pulse obeys

the wave equation for linear incident medium and has the
general solution

Erefl
y �z, t� � AR

y gR�t 1 z�y0�, y0 � c�n0 , (6)

with n0 the index of refraction of the incident medium.
The continuity of the tangential components Ey and Hx at
the boundary can be satisfied for z � 0 at all times [7] if
we take

gT �t� � gR�t� � f2�t� for all t ,

AR
y �

x �2�A2
x

�njj 1 n�� �njj 1 n0�
, (7)

AT
y � 2

x �2�A2
x

n2
� 2 ejj

n� 1 njj

n0 1 njj

. (8)

The main consequences of solutions (3)–(8) are that the
homogeneous and inhomogeneous second harmonic pulse
components travel at different velocities (yx fi yy) and
must therefore separate at sufficiently large distances,
i.e., pulse splitting of the second harmonic field, and
the unipolarity of the generated pulses since they are
both proportional to f2�t�, f�t� being real. The unipolar
nature of the generated fields arises here since we ignored
color dispersion, and the second harmonic field and low
frequency field arising from optical rectification therefore
propagate together.
These expectations are readily verified by numerically
solving the Maxwell equations for short plane wave in-
cident pulses and the geometry of Fig. 1 (but without
the undepleted pump beam approximation). In particu-
lar, for illustrative purposes we chose a birefringent
medium with no color dispersion njj � ny � 1.5, n� �
nx � 2.5, and an initial Gaussian fundamental pulse
polarized along the x direction, Ex�z, t� � Ax exp��t 2

z�y0�2�t2
p� cos�v�t 2 z�y0��, localized in the vacuum,

with tp � 12 fs, v � 1.77 3 1015 s21, and amplitude
such that x �2�Ax � 5 3 1024. The situation after propa-
gation over a distance in the nonlinear medium sufficient
to separate the homogeneous (free) and inhomogeneous
(traveling at the speed of the fundamental pulse) solution
is shown in Fig. 2. Here we observe both the temporal
splitting and unipolarity of second harmonic pulses.

We next turn to the issue of color dispersion for
short pulse SHG. Most birefringent ionic crystals, which
are transparent in the visible, and crystals lacking a
center of inversion symmetry generally have significant
dispersive and absorptive features due to optically active
infrared modes causing the dielectric constant at low
frequencies to be significantly larger than the square
of the index of refraction at optical frequencies. For
KDP and v � 2.356 3 1015 s21, ejj�0� � 17 [11], while
n2
jj�2v� � 2.226. The value of ejj�0� might not be reliable

because it is hard to obtain experimentally (compare
the measurements in Refs. [11,12]). We include these
infrared resonances using a harmonic oscillator model for
the linear optical response of KDP, and the permittivity
for the extraordinary wave is shown in Fig. 3. The
corresponding linear polarization incorporated into our
Maxwell equation solver is then a convolution of the
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FIG. 2. The fundamental pulses in reflection and transmission
(bottom) and the second harmonic and rectified pulses (top),
when the inhomogeneous and homogeneous solution in the
medium have separated. Vertical line at z � 0 mm indicates
the boundary between the incident linear medium and the
nonlinear dielectric.
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electric field with the response function obtained via
Fourier transformation of the linear optical susceptibility.

In our numerical simulations we used again as an initial
condition a Gaussian pulse incident at the boundary,
now with tp � 4.3 fs, carrier frequency v � 2.356 3

1015 s21 (corresponding vacuum wavelength l0 �
800 nm), and amplitude such that x �2�Ax � 2.7 3 1025.
The second harmonic pulses become completely sep-
arated upon propagation as shown in Fig. 4, which
incorporates the effects of color dispersion. Thus, we see
that the temporal pulse splitting phenomenon illustrated
in Fig. 2 in the absence of dispersion can appear even in
the presence of color dispersion. In addition, note that in
the presence of the material dispersion the low frequency
tail accompanying the second harmonic pulses has a
wavelength of a few micrometers, longer wavelengths
having been absorbed or strongly dispersed.

Before the temporal separation, the pulses interfere
and Maker-Terhune-type oscillations can be observed in
the computer solution in Fig. 5, which shows a series
of time snapshots of the transmitted second harmonic
and low frequency fields. These oscillations in ampli-
tude gradually disappear as the pulses separate, and the
amplitude of the separated pulses is about a half of
the maximum amplitude of the Maker-Terhune fringes.
The coherence length is defined by the distance at which
the first maximum in the Maker-Terhune fringe pat-
tern occurs, or lcoh � l0�4jnjj 2 n�j, which yields for
our parameters lcoh � 8.7 mm. The separation length at
which the homogeneous and inhomogeneous pulse solu-
tions are no longer overlapping is defined by

lsep �
y2

jDyj
�2tp� �

4
p

lcoh�vtp� , (9)

where 2tp is roughly the pulse duration, y is the pulse
velocity, and Dy � yx 2 yy . Note that the separation
length is always larger than the coherence length because
typically vtp ¿ 1. For a pulse duration 2tp � 8.6 fs,
lsep � 110 mm.

FIG. 3. Low frequency color dispersion in ionic crystals.
This dielectric constant models the linear response in the KDP’s
extraordinary polarization direction.
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As a consequence of the infrared resonances the low fre-
quency or rectified components of the homogeneous pulse
solution in the material will separate from the second har-
monic components, and this will compromise the observ-
ability of the unipolar solutions. Furthermore, infrared
absorption causes the low frequency components in the
homogeneous pulse solutions to diminish. The magnitude
of the low frequency components in the driven, or inho-
mogeneous, solution will also be reduced considerably,
when the absorption depth is comparable to or shorter
than the coherence length. The imaginary component of
the index of refraction is then larger than the difference
in the real parts, which occurs in the expression for the
inhomogeneous solution given by Eq. (4). The detailed
characteristics of infrared dispersion will lead to complex
distortions in the propagation of the low frequency com-
ponents in the pulses which will be completely separated
from the second harmonic components. An example of
this behavior is shown in Fig. 4, which shows the free
and driven transmitted pulse is separated in a second har-
monic pulse and a low frequency component. Furthermore
the low frequency components in the driven pulse will
give rise to Čerenkov-type radiation as this polarization
is driven with a velocity yx � c�n��v� with n2

��v� ,

ejj�0�. This latter type of behavior was investigated in both
theoretical and experimental detail by Auston [13].

One may also expect the nonlinear susceptibility for
the difference frequency generation and rectification
to differ from that for second harmonic generation,
x �2��0; v, 2v� fi x �2��22v; v, v�. Thus the use of a
single real constant x �2� in Eq. (1) is no longer justified.
The presence of dispersion around the frequencies v and
2v, respectively, leads to further corrections, but these
will probably not produce significant changes in the pulse
behavior. A linear variation of n��v� and njj�2v� with

FIG. 4. Temporal splitting of the free and driven second
harmonic pulses accompanied by a low frequency tail. The
driven second harmonic pulse travels along with the transmitted
fundamental pulses which is shown as a dotted line.
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FIG. 5. Series of time snapshots, Ey�z, tn� versus z for fixed
tn’s, of the transmitted second harmonic and low frequency
fields as they propagate into the medium. Note the Maker-
Terhune oscillations caused by the interference between the free
and driven solutions.

v may be taken into account by group velocity being
slightly different from the phase velocity. This will cause
a small change in the distance required for separation of
the homogeneous and inhomogeneous pulsed solution.
Second derivatives of n��v� and njj�2v� will cause
internal group velocity dispersion leading to distortion
of pulse shapes. The distances over which such effects
would become significant are generally much longer
[3–6] than the coherence length and pulse separation
length in our example.

Turning now to the issue of experimental verification
of the features described above, let us consider a 20 nJ
incident pulse of 10 fs duration, collimated to an area
of 1 mm2. The incident power flux density is 2 3

108 W�cm2. With x �2� � 8.4 3 10213 m�V one finds
from Eqs. (4) and (8) that the forced and free second
harmonic transmitted pulse have an energy of about one
tenth of a millionth (1.5 3 1027) of the incident energy.
This would correspond to roughly 6000 second harmonic
quanta per pulse which should be readily detectable. We
note, however, that the difficulty associated with detecting
such weak fields using autocorrelation techniques is
probably responsible for the fact that this phenomenon
has not previously been observed experimentally.

The time separation between the forced and free pulses
could be observed by recombining these transmitted
pulses at 2v with a pulse at v, split off from the
incident pulse, in a thin phase-matched nonlinear platelet
to yield an up-converted pulse at 3v. This signal could be
detected by straightforward frequency and spatial filtering
as a function of time delay in the path of the reference
pulse at v. Back reflections at the exit surface of the
KDP sample could be avoided by antireflective coating
on a slightly tilted back surface. The reflected second
harmonic pulse energy would be about 3 orders smaller
by comparing Eqs. (7) and (8). The signal should still
be detectable with a long train of incident femtosecond
pulses. One could also use longer incident pulses with
100 fs duration and energy of 200 nJ per pulse.

In conclusion, we have predicted that SHG using fem-
tosecond fundamental pulses produces a pulse splitting
of the generated second harmonic field which is of a
fundamental nature, that is, it appears even in the absence
of material color dispersion and is a product of the
basic nonlinear interaction in the phase-mismatched
regime. Estimates show that this phenomenon should be
observable in current experiments.
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