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Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics
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A novel equation for light propagation in underdense field-ionizing media is derived by exten
concepts of nonlinear optics into the strong-field domain. The equation is first order in the propag
coordinate and is valid for arbitrarily short pulse durations. Solutions of the first-order wave equ
are found to be in excellent agreement with solutions of the scalar wave equation. Furthermor
polarization response of a field-ionizing medium is derived from semiclassical considerations.
polarization reveals, in agreement with experiments, a previously unrecognized contribution th
shown to significantly affect the absorption loss in the presence of ionization.

PACS numbers: 42.65.–k, 32.80.– t, 52.35.Mw
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Field ionization is the primary process in matter expose
to high-intensity (I . 1014 W�cm2) radiation triggering
all strong-field processes. Whereas ionization plays
central role in strong-field atomic processes, such as h
harmonic generation (HHG) [1], it did not appear to b
important for high-field plasma physics so far. This i
because ionization saturates at the leading edge of
previously used subpicosecond or longer pulses, so that
dominant part of the pulse interacts with a fully ionize
plasma. The availability of ultrashort, few-cycle lase
pulses has changed the situation, opening a novel para
ter regime of plasma physics. Saturation of ionization
shifted to considerably higher intensities and ionizatio
continues playing a role until instants close to the puls
peak. In spite of the central role of ionization in strong
field physics, there exists no simple and complete mod
for the evolution of laser pulses in field-ionizing media.

An exact description of strong-field atomic and plasm
phenomena requires solution of Maxwells equations
combination with an analysis of the microscopic process
in the medium. This formidable task often exceeds cu
rent computer capacities and makes the use of simplifi
models indispensable. In this Letter we derive a nov
propagation equation for the strong-field regime that sim
plifies and improves existing models in the following two
respects.

(i) Our analysis extends concepts used in the pertu
bative regime of nonlinear optics into the strong-fiel
regime. Drawing on the slowly evolving wave (SEW
approximation [2], a first-order propagation (FOP) equ
tion for strong-field atomic and plasma physics is derive
that is valid for underdense media and for arbitrarily sho
pulse durations. Numerical results obtained from a sol
tion of the FOP equation and of the scalar wave equati
reveal excellent agreement.The FOP equation can be
solved by more than 2 orders of magnitude faster than the
scalar wave equation, greatly facilitating the analysis of a
wide range of strong-field atomic and plasma phenomen
such as high harmonic generation [3], x-ray lasing [4], an
processes in relativistic nonlinear optics [5–7].
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(ii) The polarization response of ionizing media [8–10
used in previous macroscopic propagation studies is
complete [11] and is not capable of describing fundame
tal processes, such as the absorption loss introduced
field ionization, correctly. Our semiclassical analysis r
veals an additional loss term. A comparison to absorpti
measurements in helium yields excellent agreement a
corroborates the validity and importance of the addition
term that increases the absorption loss by a factor of 3
our experiments.

The propagation of high-intensity pulses in matter
modeled by Maxwells equations in combination with
model for the polarization response of the mediumP. As
long asP�r, t� in the coordinates (r� � x, y) transversal
to the propagation direction (z) exhibits little variation
over a distance comparable to the center wavelengthl0,
Maxwells equations may be substituted by the scalar wa
equation. In Gaussian units and for a linearly polarize
electric field the scalar wave equation is given by

≠2
zE 1 =2

�E 2
1
c2 ≠2

t E �
4p

c2 ≠2
t P , (1)

where c is the vacuum velocity of light,≠z,t refers to
the partial derivatives with respect toz and t, and =

2
�

is the transversal Laplace operator. The derivation
the FOP equation is performed in the spectral doma
by inserting the ansatzE�r, v� � U�r, v� exp�ivz�c�
into the Fourier transformed Eq. (1), whereE�r, v� �R

`
2` dt E�r, t� exp�2ivt�. This yieldsµ

2iv
c

≠z 1 =2
�

∂
U�v� � 2

4pv2

c2 exp

µ
2

ivz
c

∂
F̂�P� ,

(2)
where the operator̂F denotes the Fourier transform an
the term≠2

zU was neglected. Neglect of the second spa
derivative has been termed SEW approximation [2] and
equivalent to elimination of backward propagating wav
solutions. The SEW approximation is applicable as lon
as changes to the electric field induced by the polarizati
of the medium over a distance comparable tol0 are small,
i.e., j≠zEj ø �v�c�E. SubstitutingU by E followed by a
© 1999 The American Physical Society
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transformation of Eq. (2) back into the time domain yields

≠jE�r�, j, t� 2
c
2

=2
�

Z t

2`
dt0 E�r�, j, t0� � 2

2p

c
≠tP�E�r�, j, t�� . (3)
Here, we have introduced the moving coordinate frame
j � z and t � t 2 z�c and have utilized the fact
that the Fourier transform of U�r�, z, v� is identical
to the electric field in the retarded coordinate system,
E�r�, j, t�. In contrast with the perturbative regime of
nonlinear optics, where the FOP equation is derived for
a complex envelope, the strong-field FOP equation (3)
governs evolution of the electric field. In the strong-field
regime of nonlinear optics, nonlinear effects dominate
linear dispersion and a decomposition of the electric field
into carrier wave and complex envelope is no longer
beneficial. As our derivation contains no assumptions
with respect to the pulse width, Eq. (3) is valid for
arbitrarily short pulse durations. The FOP equation (3)
is the first major result of this paper presenting a powerful
tool for the analysis of complex propagation phenomena
in strong-field atomic and plasma physics.

In the remainder of this paper the FOP equation is
applied to the analysis of laser pulse evolution in the
presence of field ionization. Ionization is of particular
importance constituting the primary event for all strong-
field phenomena. In order to model evolution of a
laser pulse in a field-ionizing medium, the polarization
response in (3) has to be determined. Our derivation of
P is restricted to moderate gas densities and moderate
laser intensities, at which collisions, collective plasma
processes, and relativistic effects may be neglected. For
inclusion of these phenomena, see, e.g., Refs. [5,11].
Under the above assumptions the medium polarization
can be written as P � n0e�x�, where n0 is the atomic
particle density, e�x� � e�CjxjC� is the single-atom
dipole moment, e is the electron charge, and x represents
the microscopic coordinate of the electron along the
polarization of the linearly polarized laser electric field.
The electron wave function C is obtained by solving
the time-dependent Schrödinger equation in the frame of
the dipole approximation and of the single-active-electron
approximation.

Although solution of the FOP equation (3) in combina-
tion with the Schrödinger equation is possible with current
computer capacities, it is still a demanding problem call-
ing for a further simplification. To this end, we derive an
approximate closed-form expression for P�r, t� in terms of
E�r, t� and n�r, t�, the density of electrons set free by field
ionization. The derivation draws on a simple quasistatic
model [8,12], which is valid as long as the Keldysh pa-
rameter g �

p
Ip��2Up� , 1 [13,14]. Here, Ip is the ion-

ization potential of the atom, Up � �eE�2�4mv
2
0 is the

ponderomotive potential, m is the electron mass, and v0
is the center frequency of the laser pulse. The quasistatic
model is depicted schematically in Fig. 1. In the quasi-
static limit the electron tunnels through the suppressed
Coulomb barrier and the tunneling rate adiabatically fol-
lows variations of the laser field. Coupling to other bound
states is negligibly small [12,14]. In this picture, the elec-
tron is “born” on the outer side of the Coulomb barrier at
a distance of x0�t� � Ip�eE�t� from the nucleus [15] and
with zero initial velocity, y0 � 0 [12].

The classical trajectory x�t� of the freed electron
in the nonrelativistic regime is obtained by solving
Newton’s equation of motion, mẍ�t� � eE�t�. By using
the classical trajectory the current is determined by J �
�P � e �nx 1 en �x. Here, the dot/double dot refers to the
first /second partial time derivative. As �n fi 0 only when
an electron is born, x�t� is substituted by x0�t� in the
first term of the current, yielding J � e �nx0 1 en �x. The
second time derivative of the polarization is obtained from
the current by P̈ � �J � e≠t� �nx0� 1 enẍ 1 e �n �x. As the
free electron density is changed only when an electron is
born due to ionization and as the birth velocity y0 � 0,
the last term in P̈ vanishes. After expressing x0 and ẍ in
terms of E, and integrating P̈ with respect to t, we obtain
the current

≠tP�r, t� � Ip

µ
≠tn�r, t�
E�r, t�

∂
1

e2

m

Z t

2`
dt0 n�r, t0�E�r, t0� ,

(4)

where

n�r, t� � n0

µ
1 2 exp

∑
2

Z t

2`
dt0 w	E�r, t0�


∏∂
, (5)

and w�E� is the quasistatic ionization rate. Equations (4)
and (5) in combination with the closed-form expressions
for w�E� [16] given by the ADK (Ammosov-Delone-
Krainov) theory or the tabulated values of w�E� [14]
provide an explicit constitutive law for field-ionizing
media and represent the second major result of this paper.

In comparison to previous theoretical work [8–10],
our derivation reveals an additional term proportional

FIG. 1. Schematic of an atom in the presence of a laser pulse.
The dashed and the full lines denote the electric field and the
combined potential of the nucleus and of the electric field,
respectively. The dot refers to the position of birth x0.
2931
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to the ionization potential. Whereas the second term
in (4) introduces predominantly phase effects, such as
blueshifting and broadening of the spectrum, the first term
is a pure loss term. To identify the physical effects
underlying the two terms, the loss of pulse energy per
volume in the presence of ionization DrE �

R
`
2` dt EJ

is determined. Inserting J from Eq. (4) in this expression
yields

DrE � 2
e2

2mc2

Z `

2`
A2�t� �≠tn�t�� dt 2 n�t ! `�Ip .

(6)
Here, the first term on the right hand side has been ob-
tained by performing partial integration twice, and the
vector potential is defined by the relation E � 2�1�c� �A
subject to the condition A�t ! 6`� � 0. As the total en-
ergy of electrons and laser field has to be conserved, the
energy gain of the electrons during ionization must be com-
pensated by an energy loss of the laser field. During the
interaction, the ionized electrons gain the potential energy
Ip and a kinetic energy resulting from a drift velocity, the
2932
free electrons are left behind with after the laser field van-
ished. The drift velocity is given by yd � limt!` �x�t� �
2 limt!` e��mc� �A�t� 2 A�t0�� � e��mc�A�t0� [8], where
t0 is the instant of birth of the free electron and the velocity
�x is obtained from time integration of the Newton equation
subject to the condition �x�t0� � y0 � 0. Indeed, we find
that the energy gain of the ionized electrons corresponds
to the energy loss of the laser pulse given by Eq. (6). The
first term accounts for the energy loss due to the drift ve-
locity and the second term on the right hand side introduces
an energy loss Ip per ionized electron. The two terms are
referred to as the drift loss and as the ionization loss from
hereon. From Eq. (6) we find that the ratio of the ion-
ization loss term and of the drift loss contribution scales
with the square of the Keldysh parameter g2 � Ip�2Up .
Therefore, the influence of the ionization loss is strongest
for short wavelength laser pulses and decreases with in-
creasing field strength.

Substituting the constitutive law as given by (4) in (3)
yields a novel propagation equation for the evolution of
laser pulses in field-ionizing media,
≠jE�r�, j, t� 2
c
2

=2
�

Z t

2`
dt0 E�r�, j, t0� � 2

1
2c

Z t

2`
dt0 v2

p�r�, j, t0�E�r�, j, t0� 2
2pIp

c
≠tn�r�, j, t�
E�r�, j, t�

, (7)
where v2
p�r�, j, t� � 4pn�r�, j, t�e2�m is the plasma

frequency squared [17]. Using the validity condition
derived above we find that in the presence of ionization
the FOP equation is valid for underdense plasmas, i.e., as
long as vp ø v0.

To corroborate the validity of this equation we have
performed several tests. Figure 3 shows a numerical
solution of the FOP equation (3), propagated by a
fourth-order Runge-Kutta method, and of the scalar wave
equation (1), solved by the commonly used leap-frog
method, in one space dimension. The two solutions
are nearly identical proving the applicability of the
SEW approximation for underdense plasmas and the
validity of the FOP equation. Small deviations come
from a reflection at the vacuum-gas surface that cannot
be accounted by the FOP equation. In the scalar wave
equation, vacuum propagation of the laser pulse limits the
maximum spatial step size to ,0.005 mm. The major
advantage of the FOP equation is that this limitation
of the step size is eliminated by use of the moving
coordinate frame. Consequently, for the integration of
Eq. (3) a considerably larger step size (�1 mm) can be
used speeding up solution of the FOP equation by more
than 2 orders of magnitude.

To demonstrate the validity of the ionization loss term
revealed by our analysis we compared the experimentally
measured energy loss in helium (500 Torr) with the loss
obtained from a solution of the FOP equation (7) in two
space dimensions assuming radial symmetry. The pulse
parameters were l0 � 800 nm, I0 � 2 3 1015 W�cm2,
and a FWHM pulse duration tp � 5 fs; for a more
detailed description of the laser system, see, e.g., Ref. [1].
The experimentally (full circles) and theoretically (full
line) obtained energy loss is plotted versus gas interaction
length in Fig. 2. The dashed line represents the numerical
solution without the ionization loss term, which is the
second term on the right hand side of (7). In order
to eliminate possible errors originating from the limited
validity of the ADK model we used the exact static
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FIG. 2. Thin-dashed line: Normalized input electric field of a
Ti:sapphire laser pulse. Empty circles and full line: Solution of
the FOP equation (7) and of the scalar wave equation (1) with
the polarization (4) in one space dimension, respectively. The
pulse parameters are I0 � 2 3 1015 W�cm2, l0 � 0.8 mm,
and full width at half maximum (FWHM) pulse duration tp �
5 fs; the remaining parameters are propagation through a 1-mm-
thick He gas target at a pressure of 500 Torr corresponding to
n0 � 1.75 3 1019 cm23. At full ionization the electron density
corresponds to a ratio vp�v0 � 0.1. The excellent agreement
between the two solutions proves the validity of the FOP
equation (7) for underdense plasmas.
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FIG. 3. Output pulse energy normalized to input pulse energy
versus propagation distance for a 5 fs Ti:S laser pulse propa-
gating in helium under conditions described in the caption of
Fig. 3. The full circles denote the experimental values and the
error bars refer to an estimated 620% uncertainty in the mea-
surement of the gas interaction length. The full�dashed lines
denote the theoretical values calculated from a solution of the
2D wave equation (7) using cylindrical symmetry with�without
the ionization loss term. Our analysis clearly reveals the ne-
cessity of the ionization loss term to account for the ex-
perimental data.

ionization rates w of helium in Eq. (5) that were derived
by a full solution of the two-electron Schrödinger equation
[14]. The agreement between our model’ s prediction and
experimental data is excellent and clearly reveals the
essential role of the ionization loss term in the constitutive
law (4) for a proper description of the evolution of a
laser pulse in a field-ionizing medium. The ionization
loss term increases the energy loss by a factor of 3 under
our experimental conditions. After 4–6 mm interaction
length the pulse peak intensity has been reduced so much
due to dispersion-induced pulse broadening that ionization
stops, limiting the maximum loss to around 10%. We
recall that the ratio of ionization loss to drift loss scales
with g2 ~ 1�l

2
0. Furthermore, the free electron induced

group velocity dispersion decreases with l
3
0, leading

to longer interaction distances over which the pulse
experiences loss. As a result, the ionization loss increases
for shorter wavelengths. Our calculations show that
a frequency doubled Ti:sapphire pulse (l0 � 400 nm,
tp � 10 fs, I0 � 3 3 1015 W�cm2) loses �45% of its
pulse energy over a propagation distance of 12 mm
mainly due to the first term in (4) missing in previous
theoretical models.

As more electrons are ionized at the peak of the pulse
than in the pulse wings, the ionization loss leads to a
stronger reduction of the pulse peak and therewith, to a
lengthening of the pulse. As a result, the nonlinear in-
teraction saturates faster and the blueshifting and spectral
broadening of the pulse is reduced. The observed behav-
ior has important implications on strong-field phenomena,
such as a modification of the maximum interaction length
for x-ray lasing and high harmonic generation, which will
have to be analyzed in future investigations.

In conclusion, we have derived a first-order propagation
equation for strong-field atomic and plasma physics which
is valid for ionizing media below the critical density
and for arbitrarily short pulse durations. The simplified
wave equation is accurate and expedites computing by
more than 2 orders of magnitude. In combination with
a closed-form constitutive law for optical field ionization
this first-order wave equation constitutes a powerful tool
for predicting the macroscopic response of atomic media
driven by strong laser fields.

The authors gratefully acknowledge the support of
Professor A. J. Schmidt. This work was supported by the
Austrian Science Fund, Grant No. P12631-PHY, and by
the Austrian Nationalbank, Jubiläumsfondsprojekt 7178.

*Email address: brabec@rs6.iaee.tuwien.ac.at
[1] C. Spielmann et al., Science 278, 661 (1997); M. Schnürer

et al., Phys. Rev. Lett. 80, 3236 (1998).
[2] T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[3] A. L’Huillier and P. Balcou, Phys. Rev. Lett. 70, 774

(1993); J. J. Macklin et al., Phys. Rev. Lett 70, 766 (1993).
[4] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, Opt. Lett. 19,

569 (1994).
[5] A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 76,

3975 (1996).
[6] D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou,

and R. Wagner, Science 273, 472 (1996).
[7] G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. Lett.

78, 3314 (1997).
[8] F. Brunel, J. Opt. Soc. Am. B 7, 521 (1990).
[9] Wm. M. Wood et al., Phys. Rev. Lett. 67, 3523 (1991).

[10] C. Kan et al., Phys. Rev. Lett. 79, 2971 (1997); V. B.
Gil’denburg et al., Phys. Lett. A 203, 214 (1995); V. B.
Gil’denburg et al., JETP Lett. 51, 105 (1990).

[11] S. C. Rae and K. Burnett, Phys. Rev. A 46, 1084 (1992);
46, 2077 (1992).

[12] P. B. Corkum et al., Phys. Rev. Lett. 62, 1259 (1989); P. B.
Corkum, Phys. Rev. Lett. 71, 1994 (1993); M. Lewenstein
et al., Phys. Rev. A 49, 2117 (1994).

[13] L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
[14] A. Scrinzi, M. Geissler, and T. Brabec, Phys. Rev. Lett.

83, 706 (1999).
[15] B. Walker et al., Phys. Rev. Lett. 73, 1227 (1994); N. B.

Delone and V. P. Krainov, J. Opt. Soc. Am. B 8, 1207
(1991).

[16] M. V. Ammosov et al., Sov. Phys. JETP 64, 1191 (1986).
[17] Equation (7) can be converted to SI units by multiplying

the right hand side with 1�4pe0.
2933


