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Previous investigations of riddling have focused on the case where the dynamical invariant se
the symmetric invariant manifold of the system is a chaotic attractor. A situation expected to ar
commonly in physical systems, however, is that the dynamics in the invariant manifold is in a period
window. We argue and demonstrate that riddling can be more pervasive in this case because it can o
regardless of whether the chaotic set in the invariant manifold is transversly stable or unstable. Sca
behavior associated with this type of riddling is analyzed and is supported by numerical experiments
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Recently, the phenomenon of riddling has attract
much attention [1–9]. The dynamical conditions for rid
dling to occur were first described in Ref. [2], where
was shown that for systems with an invariant manifoldM :
(i) if there is a chaotic attractor inM ; (ii) if a typical tra-
jectory in the chaotic attractor is stable with respect to pe
turbations transverse toM , then the basin of the chaotic
attractor inM can be riddled with holes that belong to
the basin of another attractor offM , provided that such
an attractor exists. That is, for every initial condition tha
asymptotes to the chaotic attractor inM , there are initial
conditions arbitrarily nearby that asymptote to the attract
off M . Riddling has become a topic of much investiga
tion, because it is fairly common for systems with sym
metry or for spatiotemporal chaotic systems such as tho
described by coupled maps or by coupled differential equ
tions. Spatially coupled systems naturally possess an
variant manifold: the synchronization manifold on whic
all individual oscillators evolve chaotically and synchro
nously in time [5].

Previous research has been based on the assump
that conditions (i) and (ii) are necessary for riddling t
occur. In this work, we argue that one of the condition
condition (i)—the existence of a chaotic attractor in th
invariant manifoldM , in sufficient but not necessary
It is necessary, however, that a chaotic invariant s
does exist inM [10]. It is thus sufficient to have a
chaotic saddle inM . These findings have significan
dynamical consequences to important practical problem
While chaotic attractors are common in physical system
it can easily disappear as a system parameter underg
arbitrarily small changes [11]. For instance, the dynami
in the invariant manifold may be that of one of the infinit
number of periodic windows near a parameter value
which the chaotic attractor is observed. Since period
windows occupy intervals of parameter values which a
apparently dense [12] in the parameter space, we exp
this situation to be common in nonlinear systems. A
a given periodic window, one finds the coexistence
a nonattracting chaotic saddle and an attracting perio
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orbit [13]. A question is then, how does riddling manifes
itself when the dynamics in the invariant manifold i
in a periodic window whose invariant sets are both
nonattracting chaotic saddle [necessary condition (i) f
riddling] and an attracting periodic orbit? The purpose
this Letter is to address this question in view of the stat
necessary conditions for riddling. We find that riddling
in fact, occurs in the transverse vicinity of the chaot
saddle. Moreover, the basin of attraction in the transve
vicinity of the stable periodic orbit also consists of ope
volumes (open areas in two dimensions). Globally, th
basin of attraction of the stable periodic orbit is therefo
of a mixed type: riddled basins and open volumes.
surprising finding is that this type of riddling occurs in
a wide parameter region for both transversely stable
transversely unstable chaotic saddles. This is in contr
to riddling with chaotic attractors, where riddling occur
only when the attractor is transversely stable with some
the embedded unstable periodic orbits being transvers
unstable. To quantify riddling, we investigate scalin
laws for physically observable quantities such as t
probabilities for a random initial condition to asymptot
to different attractors. The main implication of ou
results is that riddling is a robust dynamical phenomeno
regardless of the nature of the attracting set in t
invariant manifold, in so far as there is chaos (attractin
or nonattracting) in the system.

We begin by presenting a qualitative argument fo
the condition under which riddling can be observe
Let M be the invariant manifold in which there is a
nonattracting chaotic saddleS and an attracting periodic
orbit O , and let A be an attractor offM . Assume
that the periodic attractorO is transversely stable so
that there is a boundary between the basins of attract
of O and A. Since O is stable both inM and in
the transverse direction, the basin of attraction in t
transverse vicinity ofO is an open set containingO
with finite volume. Now consider the situation wher
all unstable periodic orbits embedded in the chao
saddleS are transversely stable. In this case, almo
© 1999 The American Physical Society
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all initial conditions in the vicinity of M asymptote to
the periodic attractor in M . There is no riddling in
this case. As a system parameter p changes through a
critical value pc, one of the unstable periodic orbits in
S becomes transversely unstable and, as a consequence,
a set of an infinite number of tongues opens at the
locations of the periodic orbit and all its preimages
[7]. This is the riddling bifurcation that marks the
onset of riddling for p . pc [7]. There is, however,
a practically important difference in the dynamics for
p . pc between the case treated in Ref. [7], where
the invariant set in M is a chaotic attractor, and our
case here. It was shown in Ref. [7] that for p . pc,
trajectories in the vicinity of M can typically spend
an extremely long time near M before asymptoting
to the attractor A—a superpersistent chaotic transient.
The lifetime of the transient scales with Dp � jp 2 pcj
as tA � exp�K�Dp�2g�, where g . 0 and K . 0. In
our case, this type of supertransient still occurs [14],
but there is another lifetime tO associated with the
chaotic saddle, which is typically much shorter than the
supertransient lifetime: tO ø tA. Note that tO is the
lifetime of transient chaos around the saddle [15]. That
is, a trajectory in the basin of the periodic attractor O
approaches this attractor in a time that is typically shorter
than the time tA. As a practical consequence, no riddling
can be observed readily, say, in numerical experiments,
after the riddling bifurcation, until tO � tA. This, of
course, does not imply that the basin is not riddled until
tO � tA. As Dp increases, tA decreases and becomes
smaller than or equivalent to tO . In this case, riddling
can be observed. Mathematically, the basin of attraction
of A consists of an open dense set of tongues off the
invariant manifold M but these tongues are restricted
to the set S . Insofar as unstable periodic orbits in
M can be both transversely stable and transversely
unstable, which can occur regardless of whether the
chaotic saddle itself is transversely stable or unstable,
riddling can occur. This is different from riddling of a
chaotic attractor in M , in which case riddling disappears
when the attractor becomes transversely unstable [1–9].
In this sense, we expect riddling to be more pervasive
when the dynamics in M is in a periodic window.

We consider the following general class of dynamical
systems: xn11 � f�xn, r� 1 higher order terms of yn and
yn11 � g�xn, a�yn 1 higher order terms of yn, where
x [ RNS �NS $ 1�, y [ RNT �NT $ 1�, f�xn, r� is a
map possessing an infinite number of periodic windows,
g�xn, a� is a scalar function, and r and a are parameters.
The invariant manifold is defined by y � 0 because for
initial y0 � 0, trajectories have yn � 0 for all times. We
choose the parameter r in the map f�xn, r� so that it is
in a periodic window of period m. Let L

S
T and L

O
T be

the largest transverse Lyapunov exponents of the chaotic
saddle and of the periodic attractor, respectively. To be
concrete, we study the following two-dimensional map:
xn11 � rxn�1 2 xn� 1 by2
n and yn11 � axnyn 1 cy3

n,

(1)

where f�x� � rx�1 2 x� is the logistic map, and a, b,
and c are parameters. We choose r � 3.84 so that the
logistic map is in a period-3 window with an attracting
periodic orbit of period 3 coexisting with a chaotic saddle.
We are interested in the case where L

O
T remains negative.

There are thus two attractors in the system: the period-3
attractor in the invariant manifold y � 0 and the attractor
at j yj � 1`. We find, for instance, for b � 0.1 and c �
1.0, L

O
T is negative in a wide range of values of parameter

a, while L
S
T passes through zero from the negative side at

ac as a is increased, where 1.7 , ac , 1.8. Numerically,
we find that the basin of the period-3 attractor is riddled,
regardless of whether the chaotic saddle in y � 0 is
transversely stable or transversely unstable, and the basin
of the attraction at infinity is an open dense set of tongues
in the transverse neighborhood of S . However, due to
tO ø tA, it is numerically difficult to observe riddling
when L

S
T is more negative, say, for a , 1.5.

To quantify riddling, we focus on the scaling behaviors
of some physical observables. For example, we can
consider the probability for an initial condition chosen
randomly from a line at y � e near the invariant manifold
y � 0 to asymptote to the attractor at infinity. Denote this
probability by F1�e�. Figures 1(a) and 1(b) show F1�e�
vs e on a logarithmic scale for a � 1.7 and a � 1.8,
respectively. Apparently, we have, for both cases, the
following algebraic scaling law:

F1�e� � eg , (2)

where the scaling exponent is g � 1.73 and g � 0.92 for
Figs. 1(a) and 1(b), respectively. Note that the scaling
exponent in Fig. 1(a) is significantly larger than that for
the case where there is a chaotic attractor in the invariant
manifold with similar transverse Lyapunov exponent. In
that case, the scaling exponent is proportional to jL

S
T j

which is close to zero [3,8]. The largeness of the scaling
exponent g for jL

S
T j * 0, regardless of whether L

S
T is

positive or negative, is a general feature of riddling
in our case, in contrast to riddled basins of chaotic
attractors. Physically, such a large exponent means that it
is significantly more difficult for trajectories with random
initial conditions near the invariant manifold to asymptote
to the attractor off the invariant manifold. The dynamical
reason lies in the finite lifetime tO of the chaotic saddle:
A trajectory will approach the periodic attractor in a time
given by tO . When jL

S
T j * 0, it usually takes a long

time for trajectories to escape the finite-time transverse
attraction of the chaotic saddle in order to asymptote to
the attractor off the invariant manifold.

To better understand riddling and the scaling law
Eq. (2), we construct a simple analyzable model that
captures the main feature of our numerical model Eq. (1).
2927
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FIG. 1. F1�e� vs e on a logarithmic scale for (a) a � 1.7,
and (b) a � 1.8.

The model is the following two-dimensional map defined
for 2` , x , ` and 0 # y , `:

xn11 �

8><
>:

h�xn�, xn , 0 ,
11q

p xn, 0 , xn , p ,
11q
12p �1 2 xn�, xn . p ,

(3)

yn11 �

8<
:

e2Gyn, xn , 0 and 0 # yn , 1 ,
cyn, 0 , xn , p , 1�2 and 0 # yn , 1 ,
dyn, xn . p and 0 # yn , 1 ,

where q * 0, 0 , p , 1, c . 1, 0 , d , 1, and
2928
G . 0. The map h�x� is chosen such that it has a stable
fixed point O in x , 0, as shown in Fig. 2(a). Since q *

0, we see that the x dynamics has a chaotic saddle in �0, 1�
with lifetime tO � �ln�1 2 D�21�21 � 1�ln�1 1 q� �
1�q, and almost all initial conditions eventually asymptote
to the fixed-point attractor O. This is the dynamics in the
invariant manifold y � 0. The y dynamics is described
by a simple expansion-contraction process for 0 # y , 1,
and we assume there is another attractor A located at
y . 1 and any trajectory with y . 1 asymptotes to it
rapidly. The transverse Lyapunov exponents of the fixed-
point attractor and the chaotic saddle are L

O
T � 2G ,

0 and L
S
T � �p�q� lnc 1 ��1 2 p��q� lnd, respectively.

Choosing p as the bifurcation parameter, we see that L
S
T

crosses zero from the negative side when p passes through
the critical point pc � jlndj��lnc 1 jlndj�. Letting Y �
2 lny, we have Yn11 � an 1 Yn, where an � 2lnc ,

0 if 0 , xn , p and an � 2lnd . 0 if p , xn , 1.
Since the x dynamics is chaotic for 0 , x , 1 in time
tO , we see that the dynamics in Yn is a finite-time
random walk. Focusing on the situation where p � pc

so that L
S
T � 0, the random walk dynamics can be

described by the following drift-diffusion equation in

time tO: ≠P
≠t 1 n

≠P
≠Y � D

≠2P
≠Y 2 , where P�Y , t� stands for

the probability distribution for Y , n � 2L
S
T � 0 is the

average drift, and D � 1
2 	�dY 2 	dY
�2
 is the diffusion

coefficient. Choosing initial conditions from a line at
Y0 � 1�lne � y � e�, we have P�Y , 0� � d�Y 2 Y0� as
the initial condition for the diffusion equation. Since
trajectories having y . 1 are lost to the attractor A at y .

1, we have an absorbing boundary at Y � 0 � y � 1�:
P�0, t� � 0 for t , tO . Solving the diffusion equation
with these conditions by using the standard Laplace-
transform technique [16], we obtain P�Y , s�, the Laplace
transform of P�Y , t�, as follows:
P�Y , s� �
1

D�P1 2 P2�
�2eP2Y02P1Y 1 Q�Y0 2 Y �eP2�Y02Y � 1 Q�Y 2 Y0�e2P1�Y2Y0�� , (4)
where P6 � �2n 6
p

n2 1 4sD ��2D, and Q�x� is the
Heaviside step function. Since

R`

0 P�Y , t� dY is the
probability that the walker is still undergoing diffusion at
time t, the probability for a trajectory to asymptote to the
attractor A in time tO is F1�e� � 1 2

R`
0 P�Y , tO� dY .

As a crude approximation, we assume that walkers who
are still diffusing for time t . tO asymptote to the fixed-
point attractor O. We thus obtain

F1�e� � 1 2
1

2pi

Z s1i`

s2i`
ds estO

Z `

0
dY P�Y , s�

�
1

2pi

Z `

`

dv

v
eivtO exp

∑
lne
p

D

s
iv 1

n2

4D

∏
.

(5)

Figure 2(b) shows log10F1�e� vs log10e, where the inte-
gration in Eq. (5) is done numerically, and the parameters
are chosen to mimic the parameter setting in our numeri-
cal example [Eq. (1)]: n � 0.05, D � 1, and tO � 20.
We see that the algebraic scaling law (2) holds well, in
agreement with Figs. 1(a) and 1(b). The dashed straight
line in Fig. 2(b) denotes the case where tO ! `, for
which a closed expression for F1�e� can be obtained

F1�e� � en�D

∑
1
2

2
1

tO
p

p

s
D
n3 jlnej

3 exp

µ
2t

2
On3

4Djlnej

∂∏
. (6)

We see that indeed, the decay behavior for finite tO

is generally faster than that for the case of a chaotic
attractor �tO � `� in the invariant manifold, in agreement
with our numerical experiments of Eq. (1). Note that
Eq. (6) includes the case of a chaotic attractor �tO � `�
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FIG. 2. (a) The x dynamics in the theoretical model.
(b) Theoretically predicted and numerically computed scaling
relations between F1�e� and e.

as a special case where it was found previously that
F1�e� � en�D [3].

In summary, our study indicates that, due to the
dynamical interplay between the nonattracting chaotic
saddle and the stable periodic attractor, riddling can then
be more pervasive than that studied previously. Our
scaling analysis generalizes the existing ones which focus
exclusively on chaotic attractors in the invariant manifold.
Since periodic windows are structurally stable, dense
in parameter, and therefore are extremely common in
nonlinear systems, we expect our results to be relevant
to a large variety of problems including synchronization
of nonlinear oscillators [17].
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