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Entropy of the QCD Plasma
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Self-consistent approximations in terms of fully dressed propagators provide a simple expression for
the entropy of an ultrarelativistic plasma, which isolates the contribution of the elementary excitations as
a leading contribution. Further approximations, whose validity is checked on a soluble model involving
a scalar field, allow us to calculate the entropy of the QCD plasma. We obtain an accurate description
of lattice data for purely gluonic QCD, down to temperatures of about twice the transition temperature.
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The properties of the high temperature phase of QCD
cannot be easily calculated using perturbation theory, in
spite of the fact that the gauge coupling g is small if
the temperature T is sufficiently high. This is evidenced,
in particular, by the poor convergence properties of the
perturbative series [1].

Lattice results, which show that the ideal gas limit is
approached as T becomes large, can be accounted for rea-
sonably well by phenomenological fits involving massive
quasiparticles [2,3]. Although the quasiparticle picture
suggested by such fits is a rather crude representation of
the actual physics of non-Abelian gauge theories, it sup-
ports the idea that one should be able to give an accurate
description of the thermodynamics of the QCD plasma in
terms of its elementary excitations.

It is worth emphasizing at this stage that, among the
relevant degrees of freedom, the soft collective ones, with
momenta of order gT , are clearly nonperturbative. Al-
though their leading order contribution ~g3 to the pres-
sure can be easily isolated [4], it does not make much
physical sense to regard this contribution as a genuine
perturbative correction. Recent investigations [5–7] in-
dicate indeed that trying to represent this contribution by
a truncated polynomial in g is not appropriate.

In order to carry out a more complete calculation, we
shall use techniques which allow systematic rearrange-
ments of the perturbative expansion, avoiding double
countings. We shall rely, in particular, on self-consistent
approximations which provide a simple expression for the
entropy, isolating the contribution of the elementary exci-
tations as a leading contribution. We show that this en-
tropy formula can be used to get a good estimate of the
QCD entropy at high temperature. The results that we
have obtained so far are quite encouraging and give us
the hope that an analytical control of the high temperature
phase of QCD is within reach.
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We shall first discuss scalar field theories with gw3 1

g2w4 interactions, with the double purpose of presenting
the general framework and of checking approximations
which will be used later for QCD.

The thermodynamic potential V � 2PV of the scalar
field can be written as the following functional of the full
propagator D [8,9]:

bV�D� � 2 logZ � 1
2 Tr logD21 2

1
2 TrPD 1 F�D� ,

(1)

where Tr denotes the trace in configuration space, b �
1�T , and F�D� is the sum of the two-particle-irreducible
“skeleton” diagrams

The self energy P � D21 2 D21
0 , where D0 is the

bare propagator, is related to F�D� by

dF�D��dD � 1
2P . (3)

An important property of the functional V�D�, which
is easily verified using (3), is that it is stationary under
variations of D,

dV�D��dD � 0 . (4)

Self-consistent (“F-derivable”) [9] approximations, i.e.,
approximations which preserve this property, are obtained
by selecting a class of skeletons in F�D� and calculating
P from Eq. (3) above.

The stationarity of V�D� has an interesting consequence
for the entropy. Because of Eq. (4) the temperature deriva-
tive of the spectral density in the dressed propagator
cancels out in the entropy density

S � 2≠�V�V ��≠T (5)
© 1999 The American Physical Society



VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999
and one obtains [10,11]

S � 2
Z d4k

�2p�4

≠n�v�
≠T

Im logD21�v, k�

1
Z d4k

�2p�4

≠n�v�
≠T

ImP�v, k� ReD�v, k� 1 S 0

(6)

with

S 0 � 2
≠�TF�

≠T

Ç
D

1
Z d4k

�2p�4

≠n�v�
≠T

ReP ImD � 0

(7)

up to terms that are of loop-order 3 or higher. Thus, in
contrast to V, where F contributes already to order g2 in
perturbation theory, Eq. (6) with S 0 � 0 is perturbatively
correct up to, and including, order g3 [12]. The first
two terms in Eq. (6) represent essentially the entropy of
“independent quasiparticles,” while S 0 may be viewed as
the residual interactions among these quasiparticles [11].

Besides this important simplification, S , in contrast to
the pressure, has the advantage of manifest ultraviolet
finiteness, since ≠n�≠T vanishes exponentially for both
v ! 6`. Moreover, any multiplicative renormalization
D ! ZD, P ! Z21P with real Z drops out from Eq. (6).

We now focus on the self-consistent approximation
obtained in g2w4 theory where only the second diagram
in Eq. (2) for F is kept. Then ImP � 0 and ReP �
m2 � const, and Eq. (6) reduces to

S � 2
Z d4k

�2p�4

≠n�v�
≠T

Im log�k2 2 v2 1 m2�

�
4
T

∑
p2T4

90
2

m2T2

48
1

m3T
48p

1 . . .

∏
. (8)

A fully self-consistent determination of m corresponds to
solving the gap equation

m2 � 12g2
Z d4k

�2p�3 n�v�e�v�d�v2 2 k2 2 m2� . (9)

When the solution of this equation is inserted in Eq. (8), the
entropy obtained coincides with that of the exact solution
of a scalar O�N� model in the limit of N ! ` [7,13]. Note
that in contrast to Eq. (8), the gap equation is ultraviolet
divergent (for v ! 2`), and requires renormalization [7],
affecting m2 at perturbative order g4 and beyond.

In view of the subsequent application to QCD, where
a fully self-consistent determination of the gluonic
self-energy seems prohibitively difficult, we consider
now perturbative approximations. Our goal is to obtain
approximate expressions for the self-energy which allow
us to reproduce the perturbative result for the entropy
when expanded to order g3. We emphasize that our final
results for the entropy are nonperturbative, and not limited
to a truncated polynomial in g. What we are testing
here is the quality of approximations which preserve
self-consistency up to order g3 at least, which is what we
shall be able to do in QCD.
As first approximation we consider the leading contri-
bution to the self-energy at high temperature, the so-called
hard thermal loop (HTL) [14], and refer to Eq. (6) with
this restriction as SHTL. For the w4 theory, we have sim-
ply P ! P̂ � m̂2 � g2T 2. When inserted into Eq. (8),
this yields the correct result for the leading-order interac-
tion term g2T3 in the entropy.

On the other hand, the order g3 contribution contained
in SHTL turns out to be too small by a factor of 4
when compared to the well-known perturbative result
[4]. This is corrected by including the next-to-leading
order (NLO) term in the thermal mass through resummed
perturbation theory, m2 � m̂2 1 dm2 � g2T2 2

3
p g3T2

[4]. So, when compared to conventional resummed
perturbation theory, the order-g3 term arises in an unusual
manner: whereas in the former the entire plasmon effect
comes from the infrared regime, in Eq. (6) an even
larger contribution comes indirectly from the infrared
through corrections to the dispersion laws relevant at hard
momenta [the T2 term in Eq. (8) comes entirely from hard
k � T ]. This may be understood as a consequence of the
requirement of self-consistency: recall that Eq. (8) relies
on the stationarity of the thermodynamic potential, and
this has to be maintained at the order of interest.

At large coupling the NLO result for m2 inevitably
turns negative. This can be avoided by taking instead the
perturbatively equivalent form m̂2 1 dm2 � g2T2��1 1

3g�p�, which is monotonous in g, giving a very good
approximation to the solutions of Eq. (9) up to g * 1.

In Fig. 1 we compare the various approximations nu-
merically with the exact entropy (full line), normalized to
their ideal-gas values (SB), as functions of the renormal-
ized coupling in the modified minimal subtraction (MS)
scheme. In contrast to the full result, the perturbative ap-
proximations are renormalization-scale dependent. As in
Ref. [7] we consider the effect of varying the scale m̄, here
in the range m̄ � � 1

2 2� 3 2pT . The lower and upper
dark-gray bands correspond to conventional perturbative
results for S�SSB up to order g2 and g3, respectively, the
medium-gray bands to the result of HTL and NLO resum-
mations of the two-loop entropy. The latter, which clearly

FIG. 1. Comparison of perturbative and HTL-improved ap-
proximations to the entropy in the large-N scalar O�N� model.
See text for detailed explanations.
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represent a substantial improvement over the former, are
the approximations that we shall now implement for QCD.
2908
The analog of Eq. (6) in purely gluonic QCD and in
Coulomb gauge reads
S � 2Ng

Z d4k
�2p�4

≠n�v�
≠T

�2 Im log�2v2 1 k2 1 PT � 1 2 ImPT Re�v2 2 k2 2 PT �21

1 Im log�k2 1 PL� 2 ImPL Re�k2 1 PL�21� (10)
with Ng � N2 2 1 � 8 for SU(3). The (spatially) trans-
verse �PT � and longitudinal �PL� structure functions will
be specified below. Here we have assumed that the
gluon self-energy is transverse with respect to the four-
momentum, and that there are no contributions from the
ghosts, which turns out to be justified in the approxima-
tions that we shall be interested in [12].

The order g2 contribution to the entropy is easily
extracted from Eq. (10),

S �2� � 22pNg

Z d4k
�2p�4

≠n
≠T

3 e�v�d�v2 2 k2� RePT �v, k�

� 2Ng
m2

`T

6
� 2

NNg

36
g2T3. (11)

Here we have used the fact that the integral is dominated
by hard momenta and that the transverse quasiparticles
have the asymptotic thermal mass,
m2
` � PT �v2 � k2� � g2NT2�6 . (12)

This latter result is exact at the bare one-loop level [15].
The contribution of order g3 involves loop integrals

with soft momenta, which requires using the HTL ap-
proximation for P, where [14,16]

P̂L�v, k� � m̂2
D�1 2

v

2k log v1k
v2k � , (13)

P̂T �v, k� � 1
2 �m̂2

D 1 �v2

k2 2 1�P̂L� , (14)

with m̂D � gT
p

N�3. The spectral density of the corre-
sponding gluon propagator consists of quasiparticle poles
with momentum-dependent effective masses and Landau
damping cuts for jvj , k. When k ¿ gT , the additional
pole associated to the collective longitudinal excitation
has exponentially vanishing residue [17].

The order-g3 contribution in SHTL can be isolated as
S
�3�
HTL�Ng �

Z d4k
�2p�4

1
v

�2 ReP̂T �Im�v2 2 k2 2 P̂T �21 2 Im�v2 2 k2�21� 2 ReP̂L Im�k2 1 P̂L�21� 2
m̂3

D

24p
.

(15)

For the same reason as in the above scalar example, this is
only part of the full order g3 contribution. Remarkably,
it turns out that, as in the scalar case, Eq. (15) is precisely
1�4 of the correct result S�3� � Ngm̂3

D��3p�.
The remaining order-g3 correction comes from Eq. (11)

with dPT in place of P̂T , with dPmn being evaluated at
order gm̂2

D in HTL-resummed perturbation theory. The
expression (11) is dominated by hard momenta k � T ,
and to the order of interest dPT is given by the two
contributions shown in Fig. 2, in which one internal line is
hard, and the other one is a soft resummed longitudinal (a)
or transverse (b) gluon propagator. Diagram 2(a) restores
the correct combinatorial factor of the longitudinal ring
diagrams, whereas diagram 2(b) compensates for spurious
transverse plasmon effects that are present in the HTL
approximation SHTL [12].

We turn now to the numerical evaluation of SHTL and
shall discuss the effects of the above NLO contributions

(a) (b)

FIG. 2. NLO contributions to dPT at hard momentum. Thick
dashed and wiggly lines with a blob represent HTL-resummed
longitudinal and transverse propagators.
further below. SHTL involves two physically distinct
contributions. One corresponds to the transverse and
longitudinal gluonic quasiparticle poles,

S
QP
HTL � 2Ng

Z d3k
�2p�3

≠

≠T

∑
2T log�1 2 e2vT �k��T �

1 T log
1 2 e2vL�k��T

1 2 e2k�T

∏
,

(16)
where only the explicit T dependences are to be differen-
tiated, and not those implicit in the HTL dispersion laws
vT �k� and vL�k�. The latter are given by the solutions of
v

2
T 2 k2 � P̂T �vT , k� and k2 � 2P̂L�vL, k� [16].
Secondly, there are the Landau-damping contributions

which read

SLD
HTL � 2Ng

Z `

0

k2dk
2p3

Z k

0
dv

≠n�v�
≠T

3 �2 arg�k2 2 v2 1 P̂T �
1 2 ImP̂T Re�v2 2 k2 2 P̂T �21

1 arg�k2 1 P̂L� 2 ImP̂L Re�k2 1 P̂L�21� .
(17)

The usual perturbative g2 contribution (11) is contained
in the first term of Eq. (16); all the other terms in
Eqs. (16) and (17) are of order g3 in a small-g expansion.
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FIG. 3. HTL-improved results for the two-loop entropy
S �SSB in purely gluonic QCD (full lines) with m̄ varied
between pT and 4pT ; our estimates for NLO effects are given
by the dash-dotted lines. The lattice result for the entropy
is represented by the dark-gray band. For comparison, the
HTL-resummed results of Ref. [19] for the one-loop pressure
are given by the dotted lines, the lattice results for P�PSB
by the light-gray band. (Because of the weak temperature
dependence of the theoretical result the prediction of Ref. [19]
for P�PSB is approximately that for S�SSB.)

In Fig. 3, we compare the numerical evaluation of
SHTL�SSB with the lattice data for purely gluonic QCD
from Ref. [18], in the same manner as done in Ref. [19],
i.e., we use the two-loop running coupling constant
as�m̄� of the MS scheme with LMS � Tc�1.03 and the
renormalization scale is varied in the range m̄ � � 1

2 2� 3

2pT to give an estimate of the theoretical uncertainty.
The thick dark-gray line represents the lattice data

for the entropy density with the thickness of the line
giving roughly the error reported in Ref. [18]. Our result
reproduces the lattice data rather well already for T * 2Tc.

Also given in the same figure are the lattice data for the
pressure P�PSB (the lower light-gray band) and the result
for the full HTL resummation of the one-loop pressure
reported in Ref. [19] (dotted lines). The discrepancy be-
tween the latter can be attributed in part to an overcount-
ing in the interaction pressure in Ref. [19], which will be
corrected only in a fully resummed two-loop calculation.
By contrast, our approach has the advantage of includ-
ing the correct leading order interaction terms already in
a pure HTL approximation, and also of manifest ultra-
violet finiteness, thus avoiding the introduction of artifi-
cial counterterms depending on the thermal mass.

Turning now to the NLO approximation to S , we note
that, at hard momenta k, RedPT�v2 � k2� is, unlike
m2

`, a nonlocal quantity. In order to get some estimate
on its numerical effect, we approximate it by a constant
correction which has the right magnitude to produce the
known perturbative coefficient of order g3. We choose
this as m2

` 1 dm2
` � g2T2N��6�1 1

p
3N g�p��, and

include this correction only in the hard momentum region
defined by k . M �

p
2pTmD . The reason for this is

that we do not want to change by hand the overall scale
of HTL contributions in the soft regime, where NLO
contributions are known to behave quite differently: the
long-wavelength plasma frequency receives much smaller
negative corrections [20], and the Debye screening mass
is known to be even substantially increased [21,22].

The dash-dotted lines in Fig. 3 give the correspondingly
modified numerical results. In addition to a variation of
m̄ we have also included a variation of M, the boundary
between hard and soft momenta, by a factor of 2 around its
central value. These results happen to describe the lattice
data surprisingly well, although their primary significance
is to demonstrate the relative stability of our scheme upon
the inclusion of terms that restores equivalence with the
known perturbative result up to and including order g3. A
full NLO calculation still remains to be done and will be
presented in a forthcoming publication.
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