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Excitation of Phonons in a Bose-Einstein Condensate by Light Scattering
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Stimulated small-angle light scattering was used to measure the structure factor of a Bose-Einst
condensate in the phonon regime. The excitation strength for phonons was found to be significan
reduced from that of free particles, revealing the presence of correlated pair excitations and quant
depletion in the condensate. The Bragg resonance line strength and line shift agreed with predictio
for the homogeneous Bose gas using a local density approximation.

PACS numbers: 03.75.Fi, 05.30.–d, 32.80.Pj, 65.50.+m
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Spectroscopic studies have been used to assembl
complete understanding of the structure of atoms a
simple molecules. Similarly, neutron and light scatterin
have long been used to probe the microscopic excitatio
of liquid helium [1–4], and can be regarded as th
spectroscopy of a many-body quantum system. Wi
the realization of gaseous Bose-Einstein condensates,
spectroscopy of this new quantum fluid has begun.

The character of excitations in a weakly interactin
Bose-Einstein condensed gas depends on the relation
tween the wave vector of the excitationq and the inverse
healing lengthj21 �

p
2 mcs�h̄, which is the wave vec-

tor related to the speed of Bogoliubov soundcs �
p

m�m,
where m � 4p h̄2an0�m is the chemical potential,a is
the scattering length,n0 is the condensate density, andm
is the atomic mass. For large wave vectors (q ¿ j21),
the excitations are particlelike with a quadratic dispe
sion relation. Excitations in the free-particle regime hav
been accessed by near-resonant light scattering [5]. F
small wave vectors (q ø j21), the gas responds collec-
tively and density perturbations propagate as phonons
the speed of Bogoliubov sound. Such quasiparticle e
citations have been observed at wavelengths compara
to the size of the trapped condensate [6] and thus we
strongly influenced by boundary conditions.

In this Letter, we use Bragg spectroscopy to probe e
citations in the phonon regime. Two laser beams inte
secting at a small angle were used to create excitations
a Bose-Einstein condensate with wave vectorq , j21,
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thereby “optically imprinting” phonons into the gas. Th
momentum imparted to the condensate was measure
a time-of-flight analysis. This study is the first to explo
phonons with wavelengths much smaller than the size
the trapped sample, allowing a direct connection to
theory of the homogeneous Bose gas. We show the
citation of phonons to be significantly weaker than th
of free particles, providing dramatic evidence for corr
lated momentum excitations in the many-body condens
wave function.

In optical Bragg spectroscopy, an atomic sample
illuminated by two laser beams with wave vectorsk1 and
k2 and a frequency differencev which is much smaller
than their detuningD from an atomic resonance. Th
intersecting beams create a periodic, traveling intens
modulation Imod�r, t� � I cos�q ? r 2 vt�, where q �
k1 2 k2. The atoms experience a potential due to the
Stark effect of strengthVmod � h̄G2�8D 3 Imod�Isat [7],
from which they may scatter. Here,G is the linewidth of
the atomic resonance, andIsat is the saturation intensity.

The response of anN-particle system to this per-
turbation can be evaluated using Fermi’s golden ru
We expressVmod in second-quantized notation̂Vmod �
V�2�r̂y�q�e2ivt 1 r̂y�2q�e1ivt�, where r̂y�q� �P

k â
y
k1qâk is the Fourier transform of the atomic densi

operator at wave vectorq, and âk (â
y
k ) is the destruction

(creation) operator for an atom with momentumh̄k. For
the ground statejg� with energyEg, the excitation rate
per particle is then
2p

Nh̄

µ
V
2

∂2 X
f

j� fjr̂y�q� jg�j2d���h̄v 2 �Ef 2 Eg���� � 2pv2
RS�q, v� ,
n a
of

ams

if-
where excited statesj f� have energyEf , andvR � V�2h̄
is the two-photon Rabi frequency. Thus, light scatterin
directly measures the dynamical structure factor,S�q, v�,
which is the Fourier transform of density correlations i
statejg� [3,8]. Integrating overv gives the static structure
factorS�q� � �gjr̂�q�r̂y�q�jg��N .

In this work, measurements were performed on bo
magnetically trapped and freely expanding Bose-Einste
condensates of sodium. Condensates of�107 atoms were
g

n

th
in

created by laser and evaporative cooling and stored i
cigar-shaped magnetic trap with trapping frequencies
vr � 2p 3 150 Hz andvz � 2p 3 18 Hz in the radial
and axial directions, respectively [9].

The condensate was then exposed to two laser be
which intersected at an angle of�14± and were aligned
symmetrically about the radial direction, so that the d
ference wave vectorq was directed axially (Fig. 1a).
© 1999 The American Physical Society
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FIG. 1. Observation of momentum transfer by Bragg scat-
tering. (a) Atoms were exposed to laser beams with wave
vectors k1 and k2 and frequency difference v, imparting mo-
mentum h̄q along the axis of the trapped condensate. The
Bragg scattering response of trapped condensates [(b) and (d)]
was much weaker than that of condensates after a 5 ms free
expansion [(c) and (e)]. Absorption images [(b) and (c)] af-
ter 70 ms time of flight show scattered atoms distinguished
from the denser unscattered cloud by their axial displacement.
Curves (d) and (e) show radially averaged (vertically in image)
profiles of the optical density after subtraction of the thermal
distribution. The Bragg scattering velocity is smaller than the
speed of sound in the condensate (position indicated by circle).
Images are 3.3 3 3.3 mm.

Both beams were derived from a common source, and
then passed through two acousto-optical modulators op-
erated with the desired frequency difference v, giving the
beams a detuning of 1.6 GHz below the jF � 1� ! jF0 �
0, 1, 2� optical transitions. Thus, at the optical wave-
length of 589 nm, the Bragg recoil velocity was h̄q�m 	
7 mm�s, giving a predicted Bragg resonance frequency of
v0

q � h̄q2�2m 	 2p 3 1.5 kHz for free particles. The
beams were pulsed on at an intensity of about 1 mW�cm2

for a duration of 400 ms. To suppress super-radiant
Rayleigh scattering [10], both beams were linearly polar-
ized in the plane defined by the condensate axis and the
wave vector of the light.

The Bragg scattering of a trapped condensate was ana-
lyzed by switching off the magnetic trap 100 ms after the
end of the light pulse, and allowing the cloud to freely
evolve for 70 ms. During the free expansion, the den-
sity of the atomic cloud dropped and quasiparticles in the
condensate transformed into free particles and were then
imaged by resonant absorption imaging (Fig. 1). Bragg
scattered atoms were distinguished from the unscattered
atoms by their axial displacement. The speed of Bo-
goliubov sound at the center of the trapped condensate
is related to the velocity of radial expansion yr as cs �
yr�

p
2 [11] (cs � 11 mm�s at m�h � 6.7 kHz as shown

in Fig. 1). Thus, by comparing the axial displacement of
the scattered atoms to the radial extent of the expanded
condensate, one sees that the Bragg scattering recoil ve-
locity is smaller than the speed of sound in the trapped
condensate, i.e., the excitation in the trapped condensate
occurs in the phonon regime.

For comparison, Bragg scattering of free particles was
studied by applying a light pulse of equal intensity [12]
after allowing the gas to freely expand for 5 ms, during
which the atomic density was reduced by a factor of 23
and the speed of sound by a factor of 5 from that of
the trapped condensate. Thus, Bragg scattering in the
expanded sample occurred in the free-particle regime.

The momentum transferred to the atomic sample was
determined by the average axial position in time-of-flight
images. To extract small momentum transfers, the im-
ages were first fitted (in regions where the Bragg scattered
atoms were absent) to a bimodal distribution which cor-
rectly describes the free expansion of a condensate in the
Thomas-Fermi regime, and of a thermal component [13].
The chemical potential m of the trapped condensate was
determined from the radial width of the condensate dis-
tribution [11]. The noncondensate distribution (typically
less than 20% of the total population) was subtracted from
the images before evaluating the momentum transfer.

By varying the frequency difference v, the Bragg scat-
tering spectrum was obtained for trapped and for freely ex-
panding condensates (Fig. 2). The momentum transfer per
atom, shown in units of the recoil momentum h̄q, is anti-
symmetric about v � 0 as condensate atoms are Bragg
scattered in either the forward or the backward direction,
depending on the sign of v [14].

From these spectra, we determined the total line strength
and the center frequency (Fig. 3) by fitting the momentum
transfer to the difference of two Gaussian line shapes, rep-
resenting excitation in the forward and the backward direc-
tion. Since S�q� � 1 for free particles, we obtain the static
structure factor as the ratio of the line strengths for the
trapped and the expanded atomic samples. Spectra were
taken for trapped condensates at three different densities
by compressing or decompressing the condensates in the
magnetic trap prior to the optical excitation.

The Bragg resonance for the expanded cloud was cen-
tered at 1.54(15) kHz with an rms width of 900 Hz con-
sistent with Doppler broadening [15]. This frequency
includes an expected 160 Hz residual mean-field shift,

FIG. 2. Bragg scattering of phonons and of free particles.
Momentum transfer per particle, in units of h̄q, is shown vs
the frequency difference v�2p between the two Bragg beams.
Open symbols represent the phonon excitation spectrum for
a trapped condensate at a chemical potential m�h � 9.2 kHz.
Closed symbols show the free-particle response of an expanded
cloud. Lines are fits to the difference of two Gaussian line
shapes representing excitation in the forward and backward
directions.
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FIG. 3. (a) Static structure factor S�q� and (b) shift of the
line center from the free-particle resonance. S�q� is the ratio
of the line strength at a given chemical potential m to that
observed for free particles. As m increases, the structure factor
decreases, and the Bragg resonance frequency increases. Solid
lines are predictions of a local density approximation [Eq. (5)]
using v0

q � 2p 3 1.38 kHz. Dotted line indicates the mean-
field shift of 4m�7h in the free-particle regime, with data from
[5] shown in open symbols.

giving a measured free-particle resonance frequency of
1.38 kHz. The response of trapped condensates was strik-
ingly different. As the density of the trapped condensates
was increased, the Bragg scattering resonance was sig-
nificantly weakened in strength and shifted upwards in
frequency. This reflects the changing character of the ex-
citations created by Bragg scattering as the speed of sound
was increased: at a fixed Bragg scattering momentum, the
excitations passed from the free-particle to the phonon
regime.

To account for this behavior, we use the zero-
temperature Bogoliubov description of a weakly interact-
ing homogeneous Bose-Einstein condensate [16]. The
Hamiltonian,

H �
X
k

h̄v
0
k â

y
k âk 1

X
k,l,m

2p h̄2a
mV

â
y
k â

y
l âmâk1l2m ,

(1)

for a gas in volume V , where h̄v
0
k � h̄2k2�2m, is approxi-

mated by replacing the zero-momentum operators with

c-numbers â
y
0 � â0 �

p
N0, where N0 is the number of

atoms with zero momentum. Neglecting terms of or-
der N21�2, the Hamiltonian is diagonalized by a canoni-
cal transformation to operators defined by âk � ukb̂k 2

ykb̂
y
2k , where uk � coshfk, yk � sinhfk, and tanh2fk �

m��h̄v
0
k 1 m�. The energy of the Bogoliubov excitation

created by b̂
y
k is h̄v

B
k �

p
h̄v0

k �h̄v0
k 1 2m�.
2878
Neglecting small contributions representing multiparti-
cle excitations [3,4], the single quasiparticle contribution
to the static structure factor is

S�q� �
N0

N
�gj �âqây

q 1 ây
2qâ2q

1 ây
2qây

q 1 âqâ2q� jg� . (2)

Substituting the Bogoliubov operators, one obtains [17]

S�q� 	 �u2
q 1 y2

q 2 2uqyq� � v0
q�vB

q . (3)

In the limit h̄v0
q ¿ m, the Bogoliubov excitations become

identical to free-particle excitations (uq ! 1, yq ! 0),
and S�q� ! 1. For phonons (h̄v0

q ø m), S�q� ! h̄q�
2mcs, and the line strength diminishes linearly with q.

To the same order of approximation, the quasiparticle
resonance is undamped, and the dynamical structure fac-
tor is S�q, v� � S�q�d�v 2 vB

q � (satisfying the f sum
rule:

R
vS�q, v� dv � v0

q [3]). Thus, accompanying the
diminished line strength, the Bragg resonance is shifted
upward from the free particle resonance by vB

q 2 v0
q.

Equivalently, the suppression of the Bragg resonance
in the phonon regime can be understood in terms of
the many-body condensate wave function. The static
structure factor is the magnitude of the state vector je� �P

k â
y
k1qâkjg��

p
N . The macroscopic population of the

zero-momentum state picks out two relevant terms in the
summation:

je� 	 �ây
q â0jg� 1 â

y
0 â2qjg���

p
N � je1� 1 je2� . (4)

These represent two means by which momentum is
imparted to the condensate: either by promoting a zero-
momentum particle to momentum h̄q, or else by demoting
a particle from momentum 2h̄q to zero momentum.

If correlations could be neglected, the total rate of excita-
tion would simply be the sum of the independent rates for
these two processes, proportional to �e1 j e1� � �N0

q� 1

1 � u2
q and �e2 j e2� � �N0

2q� � y2
q, where �N0

k � is the
expected number of atoms of momentum h̄k in the con-
densate. This would apply, for example, to a condensate
in a pure number state, or to an ideal gas condensate with
a thermal admixture of atoms with momenta 6h̄q, and
would always lead to S�q� . 1.

Yet, for the many-body ground state of the interacting
Bose gas, the behavior is dramatically different. Collisions
of zero-momentum atoms admix into the condensate pairs
of atoms at momenta 6h̄q, the population of which
comprises the quantum depletion [18]. As a result, the two
momentum transfer mechanisms described above produce
indistinguishable states, and the rate of momentum transfer
is given by the interference of two amplitudes, not by
the sum of two rates. Pair excitations in the condensate
are correlated so as to minimize the total energy, and
thereby give destructive interference between the two
momentum transfer processes, i.e., S�q� � �uq 2 yq�2 ,

1. For high momentum, �N0
q� ø 1 and the interference

plays a minor role. In the phonon regime, while the
independent rates u2

q and y2
q (and, hence, �N0

6q�) diverge
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as 1�q, the correlated quantum depletion extinguishes the
rate of Bragg excitation.

These results for the homogeneous Bose gas can be
applied to trapped, inhomogeneous condensates by a local
density approximation since the reduced phonon wave-
length q21 (0.4 mm) is much smaller than the condensate
size (r . 20 mm) and since the zero-point Doppler width
is smaller than the mean-field shift �h̄q�mr ø m�h̄�
[19,20]. In the Thomas-Fermi regime, the conden-
sate has a normalized density distribution f�n� �
15n�4n0

p
1 2 n�n0, where n0 is the maximum conden-

sate density. The Bragg excitation line shape is then

I�v�dv �
15
8

v2 2 v02
q

v0
q�m�h̄�2

vuut1 2
v2 2 v02

q

2v0
qm�h̄

dv , (5)

from which one can obtain the line strength S�q� and center
frequency. The line strength has the limiting values of
S�q� ! 15p�32�h̄v0

q�2m�1�2 in the phonon regime and
S�q� ! 1 2 4m�7h̄v0

q in the free-particle regime [21]. In
accordance with the f-sum rule, the center frequency v̄ is
given as v0

q�S�q�.
These predictions are shown in Fig. 3 using v

q
0 �

2p 3 1.38 kHz. Both the line strength and the shift of
the Bragg resonance are well described by our treatment.
For comparison, previous measurements [5] of the mean-
field shift of the Bragg resonance (4m�7h̄) in the free-
particle regime are also shown, clearly indicating the
many-body character of low energy excitations.

Finally, let us discuss finite temperature effects. The
structure factor at nonzero temperature is increased as
S�q� � �uq 2 yq�2 3 �1 1 NB

q 1 NB
2q� due to the popu-

lations NB
6q of thermally excited Bogoliubov quasipar-

ticles at wave vectors 6q. However, in our measurements
using stimulated scattering from two laser beams, the con-
tribution of the thermal excitations cancels out [14], and
thus we extract the zero-temperature structure factor. In
contrast, by measuring light scattering from a single beam
one could determine the temperature-dependent structure
factor. Such a measurement could detect low-momentum
thermal excitations, and thus could serve as a thermometer
for a low-temperature gas.

In conclusion, stimulated light scattering was used to
excite phonons in trapped Bose-Einstein condensates with
wavelengths much smaller than the size of the trapped
sample. The static structure factor was shown to be sub-
stantially reduced in the phonon regime. This modifica-
tion of light-atom interactions arises from the presence of
a correlated admixture of momentum excitations in the
condensate. The observed reduction of S�q� also implies
a reduction of inelastic Rayleigh scattering of light with
wave vector k by a condensate when h̄v

0
k , m [22].

This effect may reduce heating in optical dipole traps
and reduce the optical density probed in absorption imag-
ing. For example, the absorption of near-resonant light
by a homogeneous sodium condensate at a density of
3 3 1015 cm23 [23] should be reduced by a factor of 2.
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