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Novel Expression for the Wave Function of a Decaying Quantum System
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We report on a novel, practical method of determining the nonrelativistic wave function of a decaying
quantum system at all positions and times. The system consists of a particle which is initially confined
around the origin and leaks out tunneling through a potential barrier. We show that the wave function
c�r , t� of the particle can be expressed as a linear combination of Moshinsky functions, each of which is
associated with a pole of the scattering S matrix of the system. The c�r, t� so obtained is normalizable.
In the light of this approach we reexamine the Gamow wave function, which is not normalizable. We
elucidate the source of this difficulty.

PACS numbers: 03.65.–w, 23.60.+e
A complete description of the evolution of a decaying
quantum system, such as an a-decaying nucleus, involves
the determination of the time-dependent wave function.
Early in the development of quantum physics approximate
wave functions were used to study the decay rates [1].
One assumes that a particle is initially confined within
a region around the origin and at a certain time, say
t � 0, it begins to leak out by tunneling through a
potential barrier. Many such models have been examined
in the literature over the years, but the knowledge of the
space-time evolution of the wave function c�r , t� of the
particle has been limited to that inside the boundary of
the interaction region [2–5]. In fact, most of the studies
deal with the exponential decay law and the deviation
thereof at small and large times. For such analyses it
is sufficient to know the c�r , t� inside the interaction
region. However, for the quantum mechanical study of
the decaying particle as it emerges from the parent system
and interacts with its environment, e.g., a particles with
atomic electrons or detectors [6], one needs the explicit
wave function in the entire space. We are not aware
of any papers which have addressed this issue except
for a recent one [7] in which c�r , t� was determined
by numerically solving the time-dependent Schrödinger
equation. Such a numerical approach is computationally
prohibitive as r and/or t become very large.
0031-9007�99�83(15)�2867(5)$15.00
The purpose of this Letter is to show that the c�r , t� of
the model can be expressed as a linear combination of the
Moshinsky functions [8], each of which is associated with
a pole of the scattering S matrix of the interaction. In this
way we can easily calculate the wave function accurately
no matter how large r and/or t are. For simplicity
we consider the S state but extension to other partial
waves is not difficult. We also reexamine the so-called
Gamow or resonance state that is discussed extensively
in the literature [9,10]. Despite its merits the Gamow
wave function is not a good wave function outside the
decaying system. It grows exponentially and hence it is
not normalizable. We will elucidate the source of this
difficulty.

We assume a central potential V �r� representing a
repulsive barrier that supports one or more unstable bound
states or resonances. For simplicity let us also assume that
there is no stable bound state and that

V �r� � 0 for r . R . (1)

This excludes a Coulomb barrier such as an emitted a

particle feels, but in principle the restriction on the poten-
tial can be relaxed to include such systems. It is also un-
derstood that

R`

0 rV �r� dr is finite. To reduce notational
complication we set h̄ � 1 and 2m � 1 throughout. Thus
we are interested in obtaining the solution c�r , t� of the
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time-dependent Schrödinger equation for t . 0
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#
c�r , t� , (2)

where c�r , 0�, the initial state, is given. The c�r , 0� is
confined to r , R and is normalized to unity.

Let us write the stationary scattering solutions as

f�k, r , t� � e2ik2tu�k, r� , (3)

u�k, r� �
1

2ik
� f�k�f�2k, r� 2 f�2k�f�k, r�� , (4)

where k . 0 and k2 is the associated energy [11]. The
function u�k, r� is real, u�k, 0� � 0, and du�k, 0��dr � 1.
The f�k, r� is the Jost solution, which becomes f�k, r� �
e2ikr for r . R. The f�k� � f�k, 0� is the Jost function,
which is related to the scattering phase shift h�k� and the
S matrix by

f�k� � j f�k�jeih�k�, S�k� �
f�k�

f�2k�
. (5)

A useful relation is f��2k�, r� � f�k, r� [11].
The u�k, r� form a complete orthogonal set withZ `

0
u��k, r�u�k0, r� dr �

p

2k2 j f�k�j2d�k 2 k0� , (6)

where k, k0 . 0. The wave function c�r , t� can be
expressed in terms of the stationary solutions as

c�r , t� �
2
p

Z `

0

k2

j f�k�j2
C�k�e2ik2tu�k, r� dk , (7)

C�k� �
Z `

0
u��k, r�c�r , 0� dr . (8)

The C�k� differs from the C�k� of Ref. [7] through a
factor related to the normalization of u�k, r�. The u�k, r�
is an entire function of k and so is C�k� [11]. Since
C�2k� � C�k� we can write the c�r , t� as

c�r , t� �
Z `

0
e2ik2t�eikrg�k, r� 1 e2ikrg�2k, r�� dk

(9)

�
Z `

2`
e2ik2teikrg�k, r� dk , (10)

g�k, r� � 2
i
p

kC�k�
e2ikrf�2k, r�

f�2k�
. (11)

The g�k, r� as a function of complex k has an infinite
number of simple poles, which are due to the zeros
of f�2k�, which in turn give rise to poles of the S
matrix. The g�k, r� has no other singularities for finite
jkj. This follows from the fact that f�k, r� is an entire
function of k when the potential vanishes for r . R
[12]. In the absence of bound states, these poles are
all in the lower half of the complex k plane, located
symmetrically about the imaginary axis [12]. Let us
2868
denote the poles in the fourth quadrant with kn , n �
1, 2, 3, . . . ; Re�kn� increases with increasing n. We also
denote the poles in the third quadrant with kn , but
with n � 21, 22, 23, . . . . Because of the symmetric
locations of the poles, Re�kn� � 2Re�k2n� and Im�kn� �
Im�k2n� , 0.

If we assume that g�k, r� has no essential singularity
at infinity, the Mittag-Leffler theorem [13] allows us to
expand g�k, r� as

g�k, r� �
X
n

an�r�
k 2 kn

, n � 61, 62, . . . , (12)

where an�r� is the residue of g�k, r� associated with the
pole at k � kn . Note that if r . R, e2ikrf�2k, r� � 1,
and hence an�r� becomes independent of r . No additional
constant term occurs in this expansion because g�0, r� �
0, a condition which also leads to the residues satisfying
the relation

P
n an�r��kn � 0.

Equations (10) and (12) lead to the following simple
expression for c�r , t�:

c�r , t� � 22pi
X
n

an�r�M�kn , r , t� , (13)

where the summation is over n � 61, 62, . . . . The
M�k, r , t� is the Moshinsky function defined by

M�k, r , t� �
i

2p

Z `

2`

e2ip2teipr

p 2 k 1 ie
dp , (14)

where e . 0 is infinitesimal. The e is introduced when
k is real, so that the wave function has the properties
of an outgoing wave at t � 0. After the p integration,
M�k, r , t� becomes [8]

M�k, r , t� �
1
2

e2ik2teikr erfc� y� ,

y � e2ip�4 r 2 yt
2
p

t
, (15)

where y � 2k�� k�m� and erfc� y� � �2�
p

p � 3R`
y e2u2

du. Originally the Moshinsky function was
defined for real k but the above formulas are valid for
complex k with a negative imaginary part [14]. Depend-
ing on the model, g�k, r� may actually have an essential
singularity at infinity. Such cases can be handled by
slightly modifying Eqs. (12) and (13) as we illustrate in
an example below.

Among the poles, one of them, say k1, may contribute
dominantly to the integral. This occurs when the main
constituent of the initial state of the system is a narrow
resonance [3]. If we single out this pole contribution, we
obtain the approximate solution

c1�r , t� � 22pia1�r�M�k1, r , t� . (16)

Recall that a1�r� is a constant if r . R. The c1�r , t� is
normalizable but it by itself is not normalized to unity.

Let us now turn to the Gamow wave function. The k
integration of Eq. (9) can be rewritten in the form of an
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FIG. 1. The integration contour of Eq. (17) in the complex k
plane. The path N is the contour part that is below the real
axis so that all the poles in the fourth quadrant are included in
the contour.

integral along a contour in the complex k plane as shown
in Fig. 1 [3]. We choose the contour such that it contains
all of the poles of g�k, r� which are in the fourth quadrant.
The g�2k, r� has no poles in the lower half of the plane.
Then Eq. (9) can be reduced to the form

c�r , t� � 22pi
X
n

bn�r�

2
Z

N
e2ik2t�eikrg�k, r� 1 e2ikrg�2k, r�� dk ,

(17)

where the n summation is for n � 1, 2, . . . . Note that
the residues bn�r� and an�r� are different. The former is
that of the integrand of Eq. (9), whereas the latter is that
of g�k, r�. They are related by bn�r� � e2ik2

n teiknran�r�.
By taking only the dominant pole contribution we obtain
the Gamow wave function

cG�r , t� � 22pib1�r� � 22pie2ik2
1 teik1ra1�r� . (18)

Outside the barrier cG�r , t� is an outgoing wave. Because
of the negative imaginary part of k1 the amplitude of
cG�r , t� grows exponentially as r increases since a1�r�
approaches a constant value for large r . This wave
function is not normalizable.

By comparing Eqs. (16) and (18) we see that the
M�k1, r , t� of the former is replaced by a simple function
of e2ik2

1 teik1r in the latter, or 1
2 erfc� y� is replaced by
1. Note the difference between the k integrations of
Eq. (10) and that of Eq. (17). The former is a direct
integration along the real axis over �2`, `�, whereas the
latter is a contour integration in the complex k plane.
Although we take account of only one dominant pole in
the two methods of integration, c1�r , t� is a far better
approximation than cG�r , t� to the actual wave function,
and the former is not more difficult to obtain. One term
of Eq. (13) corresponds to one pole term of Eq. (17)
plus part of the integral along the segment N . The
latter becomes important as r becomes comparable to or
greater than yt. It is now clear what is responsible for
the “exponential catastrophe” [10] of the Gamow wave
function.

Let us illustrate the above analysis by considering a
specific model. This model has been used by a number
of authors [3–5,7,15] to study the exponential decay law
and deviations from it. The potential is assumed to be

V �r� � �l�R�d�r 2 R�, l . 0 . (19)

In numerical illustrations we set R � 1. For the strength
of the potential we take l � 6 and 100, which represent
typical situations of fast- and slow-decay processes. For
the wave function at t � 0 we assume

c�r , 0� �

s
2
R

sin

√
pr
R

!
u�R 2 r� , (20)

where u�x� � 1 (0) if x . 0 (x , 0).
For this model the g�k, r� for r . R is given by

g�k, r� � i
p

2R
kRe2ikR sinkR

k2R2 2 p2

3 �kR coskR 1 �l 2 ikR� sinkR�21. (21)

The g�k, r� for r , R is obtained by multiplying the
g�k, r� of Eq. (21) with

e2ikrf�2k, r� � 1 1 �l�2ikR� �e2ik�R2r� 2 1� . (22)

The poles kn are the zeros of the equation kR cotkR 1

l 2 ikR � 0. The residues an�r� of g�k, r� are
an�r� � i
p

2R
e2iknR sinknR
k2

nR2 2 p2

kn 1 �l�2iR� �e2ikn�R2r� 2 1�u�R 2 r�
�1 1 l 2 iknR� cosknR 2 �i 1 knR� sinknR

. (23)
The g�k, r� has an essential singularity at infinity. When
r . R, the singularity is due to the factor of e2ikR .
However, eikRg�k, r� has no such singularity and hence
the Mittag-Leffler theorem can be applied to it. This
leads to

c�r , t� � 22pi
X
n

an�r�eiknRM�kn , r 2 R, t� , (24)
for r . R. The c�r , t� for r , R can be obtained in a
similar manner although it is somewhat more complicated.

Figure 2 shows the wave function for the fast-decay
case, i.e., l � 6. The graph shows jc�r , t�j outside the
potential region. The two conjugate-poles approximation
(with the poles at k1 and k21) is a good approximation up to
r�R � 15. The one-pole approximation (k1) is not quite
2869
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FIG. 2. The modulus of the wave function jc�r , t�j for l � 6
and t � 2. The solid line is for the complete calculation with
all pole contributions obtained by using Eq. (13). The dashed
or dotted lines show the result when the contribution of only
one dominant pole or two conjugate poles is included. The
Gamow wave function is shown as a dash-dotted line.

as good and gives a wave function that is not continuous
at r � R. The Gamow wave function is obtained using
Eq. (18) but scaled so that it has the exact amplitude at
r � R. No such scaling is required for the one- and two-
pole approximations when l � 6. The inset shows the
exact wave function and its approximations in the interior
region of the potential where they are indistinguishable.
The normalization of the wave function is not important to
determine decay rates and hence all approximations would
be useful for that. The wave function has a discontinuous
slope at r � R because of the d-function potential. To
obtain an accurate wave function for larger values of r�R
many poles need to be included, but the effort required is
not computationally prohibitive. We have also determined
the wave function by solving Eq. (2) numerically and have
confirmed the wave function [7].

For the slow-decay case we show the graph of the
wave function when l � 100 in Fig. 3. We note that,
when l ¿ 1 and G�k2 � 24 Im�k1��y ø 1, where G is
the decay constant, the wave function has a clear wave-
front structure which travels outward at speed y. It drops
sharply as r exceeds yt. Ahead of the main wave front,
there are noticeable humps traveling at speeds 2y, 3y,
etc. These are due to the admixture in the original state
at t � 0 of higher-energy resonance states. The inset
shows the details of the wave functions around the wave
front. One can see that the exact wave function has
considerably greater structure than the one- and two-pole
approximations. Although no graph for the wave function
inside the barrier is shown, the exact and the scaled Gamow
wave functions are similar to those of Fig. 2 with much
larger amplitudes. The one- and two-pole approximations,
however, have much smaller amplitudes than the exact
wave function and need to be scaled for the case of
large l.
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FIG. 3. The modulus of the wave function jc�r, t�j for l �
100 and t � 10, obtained by using Eq. (13). The solid line is
for the complete calculation with all pole contributions. The
dashed (dotted) line shows the result when only one (two)
dominant pole(s) is (are) included. The dash-dotted line gives
the Gamow wave function.

In this Letter we considered the basic elements of de-
termining the time-dependent wave function of a decaying
system. The analysis can be generalized in several ways.
Bound states can be included by generalizing Eq. (7)
using the completeness relation which takes account of
the bound states, and by giving due consideration to the
bound-state zeros of the Jost functions. The condition of
a finite range of the potential can be relaxed provided the
Jost functions retain a structure involving simple poles
only. The Jost solutions for various potentials are known
[12] and the theory can be applied to such cases. The
theory may be applied to higher partial waves but the cor-
responding Moshinsky functions need to be determined.
Similarly, functions corresponding to the Jost solutions
have been analyzed for the Coulomb potential [12], and
hence these could be used to obtain a wave function of a
particle tunneling through a Coulomb barrier.

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

Note added in proof.—In order that Eq. (13) be com-
patible with the initial wave function of a finite extension,
it has to be modified as was done in the illustration to ob-
tain Eq. (24). This is related to the applicability of the
Mittag-Leffler expansion to the function g�k, r�. A full
account of the method will be published elsewhere.
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