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We argue that the charge ordering observed in50% doped manganites is a manifestation of th
peculiar antiferromagnetic spin ordering. The latter, combined with the large Hund’s rule physic
manganites, divides the whole system into the quasi-one-dimensional zigzag objects, which exh
very unique electronic structure and behave as band insulators. This results in a strong anis
of short-range double-exchange interactions, which is responsible for the local stability of
antiferromagnetic state.
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“Charge ordering” is one of the most intriguing phe
nomena observed in perovskite manganites [1]. Cano
cal examples of the “charge-ordered” (CO) compoun
are some three-dimensional (3D)R12xDxMnO3 [1] and
two-dimensional (2D)R12xD11xMnO4 [2,3] manganites
(R � trivalent rare-earth ion;D � divalent ion) nearx �
1�2. If the charge disproportionation took place, thes
materials would be the best candidates to obtain the eq
concentration of Mn31�A� and Mn41�B� ions, which could
then be arranged in the chessboard order (Fig. 1) to
timize the electrostatic energy [4]. Recent experimen
data for La12xCaxMnO3 [5] shed a new light on the ori-
gin of the CO state, which cannot be easily reconcile
with the simple electrostatic picture: for commensura
carrier concentrations in the higher doping rangex . 0.5
the system tends to form the very stable one-dimensio
(1D) objects—the CO stripes.

There is significant experimental evidence for the ex
tence of a fundamental connection between the CO p
nomena and very peculiar forms of the antiferromagne
(AFM) spin ordering. This was suggested, e.g., by elas
neutron scattering measurements [2] and by the colla
of the CO state in external magnetic fields [6]. Som
manganites exhibit the temperature-induced phase tra
tion from the AFM CO state to the ferromagnetic (FM
state (sometimesA-type AFM state), accompanied by the
disappearance of the charge ordering [1]. Another po
sible scenario is the direct AFM-to-paramagnetic trans
tion, for which the Néel temperature (TN ) is always lower
than the charge ordering temperature. At present, it
not clear whether the charge ordering aboveTN (which is
accompanied by the orbital ordering [3]) persists indepe
dently or is driven by AFM fluctuations of a proper type.

The mechanism of the charge/spin ordering in ma
ganites is not at all clear. After a long time since th
pioneering work of Goodenough [4], who predicted th
correct magnetic structure for La1�2Ca1�2MnO3 being
based on excellent intuition, the problem was address
again only recently. Different authors emphasized the im
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portance of several ingredients: on-site Coulomb intera
tions [7–9], the Jahn-Teller distortion (JTD) [9–11], an
intersite Coulomb interactions [8,12]. In the present Le
ter we will argue that the trigger for the charge orde
ing lies in the unique insulating feature of the quasi-1
FM zigzag chain, the magnetic building block of the C
phase, and is caused by peculiarities of the kineticeg hop-
pings. We will show that the CO phase is stabilized d
to the anisotropy of short-range double-exchange (DE)
teractions, associated with particular form of the AF
ordering. This is in line with the recent publication
[13], which strongly advocate the importance of the D
anisotropy in the physics of manganites. We will demo
strate that the idea is indeed very deep and can be
tended even to the CO phase. As the result, the ba
properties of the CO state can be described by a sim
analytically solvable model.

FIG. 1. Spin, orbital, and “charge” ordering in thea-b planes
of 50% doped CO manganites: symbolsA and A0 stand for
Mn31 sites, symbolsB, B0, andB00 stand for Mn41 sites, and
atoms belonging to two neighboring zigzag chains are deno
by the subscripts 1 and 2.a0 � jA1B1j is the lattice parameter
for the homogeneous pattern.
© 1999 The American Physical Society 2825
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The effective one-electron Hamiltonian for spin s � "
or #, which picks up the essence of the eg-band structure
dependence on the magnetic structure is given by (see,
e.g., Ref. [13])

� cH s�LL
0

ij � 2tLL
0

ij 1 Dex�1 2 deis�dijdLL0 , (1)

where the first term stands for the kinetic dds-type hop-
pings between nearest-neighbor (nn) eg orbitals specified
by L and L0 [14], the second term describes the on-site
spin exchange splitting of the eg levels, and ei is the di-
rection of magnetic moment at the site i (ei � " or #). It
is implied that Dex is driven by the large Hund’s rule cou-
pling in manganites. The remaining ingredients of our
model, the nn AFM superexchange (SE) interaction JS ,
the local orbital splitting of eg levels at A sites DO (which
may be caused by electron-electron or/and electron-lattice
interactions [15]), and a parameter controlling the charge
inhomogeneity DC, will be specified later.

The spin ordering in the a-b plane of the CO phase
is shown in Fig. 1. It is formed by 1D FM zigzag
chains (e.g., 1 and 2), propagating in the �1, 1, 0� direction
and being antiferromagnetically coupled in the �1, 1, 0�
directions. For the 2D manganites, this is exactly the
structure to be addressed. In the 3D case, the 2D structure
shown in Fig. 1 is periodically repeated in the �0, 0, 1� (c)
direction with the AFM alternation of the directions of
magnetic moments, resulting in the so-called CE structure
[4]. For example, in the nearest neighborhood along the
c direction of the chain 1 will be the chain (say, 3) with
the reversed moments, etc.

Consider these magnetic structures in the DE limit
Dex ! `. Large Dex suppresses the electron hoppings
between all neighboring zigzag chains. Thus, as the first
approximation, the chains become decoupled from each
other, and may be regarded as the building blocks of
the CO manganites, both in the 2D and 3D cases. For
a single chain, the Hamiltonian (1) can be diagonalized
analytically. For these purposes, it is convenient to adopt
the following basis at the four nonequivalent sites [16]:

A,B : j1� � j3x2 2 r2�, j2� � j y2 2 z2�
A0,B0 : j1� � j3y2 2 r2�, j2� � jx2 2 z2� .

(2)

At the sites A and A0, the choice is dictated by the
geometry of the zigzag chain. The basis at the corner sites
can be taken in the form B or B0 rather arbitrarily. For the
sake of convenience, these two types have been assigned
to the atoms in the a-b plane as shown in Fig. 1. For
the 3D systems, the basis is repeated in the c direction.
In this basis, the nonvanishing hoppings in the chain take
the form: t11

AB � t11
A0B0 � 1, t11

AB00 � t11
A0B � 2

1
2 , and t12

AB00 �

t12
A0B �

p
3

2 [note also that tLL
0

ij � tL
0L

ji , the sites B0 and B00

are equivalent, and all energies throughout the paper are in
units of the transfer integral �dds� [14] ]. The periodicity
of these hopping matrix elements is characterized by the
minimal translation R0 � �a0, a0, 0�, which connects the
sites A and A0. Then, we can apply the generalized Bloch
2826
transformation [17]. This gives the 4 3 4 Hamiltonian,
for the chain 1 and the spin s � " (the basis is in the
following order: the states 1, 2 of A sites, then the states 1,
2 of B sites),

bH�k� �

0
BBBBB@

0 0 1
2e

2ik 2 1 2

p
3

2 e
2ik

0 DO 0 0
1
2e

ik 2 1 0 DC 0

2

p
3

2 e
ik 0 0 DC

1
CCCCCA ,

(3)

where 2p # k # p . DO controls the orbital splitting
of eg levels at A sites, DC controls the charge distribu-
tion between A and B sites, so that at sites A and A0

the orbitals j1� are preferentially occupied, while at sites
B and B0 both orbitals j1� and j2� are equally occupied.
The Hamiltonian has the following eigenvalues: ´6�k� �
1
2 �DC 6

p
D2

C 1 8 2 4 cosk �, the bonding and antibond-
ing states; ´A � DO, the nonbonding y2 2 z2�x2 2 z2

atomic orbitals at A sites; and ´B � DC, a nonbonding
combination of orbitals belonging to different B sites.
The splitting into the bonding, nonbonding, and antibond-
ing states is clearly seen in the band calculations [10].
The lowest energy part of the spectrum is formed by the
single band ´2�k�, which is well separated from the rest
of the eigenvalues [18]. In the CO regime, when there
is exactly one electron per two sites, A and B, the band
´2�k� is fully occupied. This yields an insulating behav-
ior with the gap min�´A, ´B� 2 ´2�0�. This is the very
important feature of the electronic structure of the iso-
lated zigzag chain, whose origin is related with peculiari-
ties of the kinetic eg hoppings. ´2�k� does not depend on
the orbital splitting DO. Thus, for the isolated chain, the
(3x2 2 r2�3y2 2 r2)-type orbital ordering [3] (shown in
Fig. 1) is entirely determined by the kinetic effects.

Let us turn to the local stability of the peculiar AFM
ordering with respect to nonuniform rotations of magnetic
moments near the AFM equilibrium. The problem is
formulated in terms of the magnetic interactions [19],

Jij �
D2

ex

2p
Im

Z ´F

2`
d´ TrL� bG"

ij�´� bG#
ji�´�	 , (4)

where bGs�´� � �´ 2 cH s�21 is the Green function (GF)

in the real space, the Hamiltonian cH s is given by Eq. (1)
and may also include DC and DO in the same manner as in
Eq. (3), and TrL denotes the trace over the orbital indices.
Our goal is to find Jij in the DE limit Dex ! `. For the
nn interactions in the FM chain, this yields [20]

JDA1B1
� 2

1
2p

Im
Z ´F

2`
d´G11

A1B1
�´�t11

B1A1
, (5)

where bG�´� is the GF for the Hamiltonian (3) in the real
space, which can be treated analytically. This gives

JDA1B1
�DC� �

1
4p

Z p

0
dk

2 2 coskq
D

2
C 1 8 2 4 cosk

, (6)
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whence it immediately follows d
dDC

JDA1B1
�DC� , 0, sug-

gesting that the charge inhomogeneity tends to destroy
the intrachain ferromagnetism and that the charge order-
ing itself cannot be the driving force of the peculiar AFM
zigzag ordering in the CO manganites.

In the following, we consider only homogeneous
solutions corresponding to DC � 0 and argue that the
anisotropy of the AFM ordering is the key to the local
stability of the zigzag structure. First, the AFM
zigzag ordering additionally stabilizes the FM cou-
pling within the chain. Indeed, for DC � 0 we obtain
JDA1B1

� JDA1B1
�0� 
 0.174, being substantially larger than

JD2D 
 0.115, the nn DE coupling in the homogeneous 2D
FM plane with x � 0.5.

In order to calculate the interchain interactions, we shall
find the GF elements, bG"

ij and bG#
ji , between sites belonging

to neighboring zigzag chains with opposite directions of
magnetic moments (e.g., i [ 1 and j [ 2 for the interac-
tions between chains 1 and 2 in Fig. 1). For these purposes
we use separate chains as the reference system, include
the hopping matrix elements between the chains as a per-
turbation, bG"

ij�´� � 2
P
l[1,m[2

bGil�´�btlm bGmj�´ 2 Dex�
and bG#

ji�´� � 2
P
m[2,l[1

bGjm�´�btml bGli�´ 2 Dex�, and
employ the asymptotic behavior GLL0

mj �´ 2 Dex� 

21�DexdmjdLL0 in the occupied part of the spectra
´ # ´F when Dex ! `. We consider only nn interac-
tions [21]. All matrix elements of bGs�´� obtained in such
a manner and relevant to the in-plane and interplane nn
interactions are collected in Table I.

For the in-plane interactions between sites A1 and B0
2,

we obtain from Eq. (4)

JDA1B
0
2

�
1

16p
Im

Z ´F

2`
d´

3 �2G11
A1A1

�´� 2 G11
A1A

0
1
�´� 1 6G22

A1A1
�´�	

3 G11
B1B1

�´� .
The substitution of the GF elements yields

JDA1B
0
2
�DO� � JDA1B

0
2
�0� 2

3DO

64p

Z p

0
dk

5 2 4 cosk

f3
k �DO 1 fk�

,

where fk �
p

2 2 cosk and JDA1B
0
2
�0� 
 0.106.

Then, we note that besides the anisotropic nn DE
interactions, JDA1B1

and JDA1B
0
2
, there are also the SE AFM

nn interactions JS , which we assume to be isotropic.
Formally, JS can be obtained in the first order of 1�Dex
expansion for nn magnetic interactions [20]. Under this
general definition, JS may be regarded as a combination
of SE interactions associated with both t2g and eg degrees
of freedom. Then, the 2D AFM zigzag structure will be
stable if

JDA1B
0
2
�DO� , jJSj , JDA1B1

(7)

(i.e., when the total coupling JD 1 JS remains FM in
the chain, and becomes AFM between the chains). Since
JDA1B

0
2
�0� , JDA1B1

, the 2D AFM zigzag ordering may be
TABLE I. The Green function elements relevant to nn inter-
chain exchange interactions in the a-b plane (ij � A1B

0
2) and

between neighboring a-b planes (ij � X1X3, where X � A or
B). Remaining elements are either zeros or appear in Eq. (4)
in the combination with a zero element. The hopping matrix

elements are t11
A1B

0
2

� 2 1
2 , t21

A1B
0
2

�
p

3
2 , t11

A01B
0
2

� 1
4 , t11

X1X3 � 1
4 ,

t12
X1X3 � t21

X1X3 �
p

3
4 , and t22

X1X3 � 3
4 . Note also the symmetry

properties: tLL
0

ij � tL
0L

ji , G11
B0

2B
0
2

� G11
B1B1 , and GLL

X3X3 � GLL
X1X1 .

ij LL0
Dex� bG"�LL

0

ij Dex� bG#�L
0L
ji

A1B
0
2 11 G11

A1A1 t
11
A1B

0
2

1 G11
A1A

0
1
t11
A01B

0
2

G11
B0

2B
0
2
t11
B0

2A1

A1B
0
2 21 G22

A1A1 t
21
A1B

0
2

G11
B0

2B
0
2
t12
B0

2A1

X1X3 LL0 GLL
X1X1 t

LL0

X1X3 GL0L0

X3X3 t
L0L
X3X1

stabilized due to the anisotropy of the DE interactions
alone, without an additional orbital splitting of eg levels
at A sites. The finite splitting DO significantly increases
the stability area (Fig. 2). The anisotropy of magnetic
interactions is clearly seen in band calculations [11],
though the AFM counterpart JS obtained in the ab initio
manner seems to be insufficient to stabilize the AFM
coupling between the chains and a small JTD becomes
indispensable. If JDA1B

0
2
�DO� . jJSj (jJSj . JDA1B1

) the 2D
AFM zigzag ordering becomes unstable with respect to
the homogeneous FM (bipartite AFM) ordering.

In the 3D case, the nn interactions along the c direction
take the following form (X � A or B; see Table I):

JDX1X3
�

1
32p

Im
Z ´F

2`
d´�G11

X1X1
�´� 1 3G22

X1X1
�´�	2. (8)

For A sites this yields

JDA1A3
�DO� � JDA1A3

�0� 2
3DO

32p

Z p

0

dk
fk�DO 1 fk�

,

where JDA1A3
�0� 
 0.076. Then, one can verify that

JDA1B
0
2
�DO� . JDA1A3

�DO�. Thus, any JS which stabilizes

FIG. 2. The parameter range corresponding to the local
stability of the AFM zigzag ordering at 50% doping in the 2D
case (the full shaded area, both dark and light) and in the 3D
cases, the so-called CE-type ordering (the light shaded area).
2827
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the AFM interchain coupling within the a-b plane
will also stabilize the AFM coupling between A sites
along the c direction. The situation for B sites is more
complicated. Using Eq. (8) we obtain JDB1B3


 0.188,
which does not depend on DO and is greater than the
in-chain interaction JDA1B1

. Thus, a sufficiently strong SE
interaction jJSj . JDB1B3

, which would lead to the total
AFM coupling between the sites B1 and B3, will also
overcome the FM DE interaction within the chain, and
make the whole CE spin structure unstable with respect
to the 3D bipartite AFM (the so-called G-type) ordering.
Nevertheless, the 3D CE ordering can exist with a joint
effect of several interactions in the system, when the
total coupling between the sites B1 and B3 remains to
be FM and the AFM alignment between the planes is
driven by other interactions. The criterion is given by
the superposition of the three conditions: (i) The 2D
AFM zigzag structure is stable—Eq. (7). (ii) The total
coupling between neighboring zigzag chains along the c
direction is AFM,

2jJSj . JDA1A3
�DO� 1 JDB1B3

. (9)

(iii) The sum of all Heisenberg-type interactions in the
CE structure in which the B1 site is involved,

P
i�J

D
B1i 1

JS�eB1 ? ei (eB1 ? ei � 1 for the ferromagnetically
coupled atoms within the same chain and eB1 ? ei � 21
for the antiferromagnetically coupled atoms in neighboring
chains) is positive, meaning that the magnetic equilibrium
corresponds to the minimum of the total energy, and the
magnetic moment at the site B1 does not flip [19]. This re-
sults in the condition jJSj . JDA1B

0
2
�DO� 1 JDB1B3

2 JDA1B1
,

which appears to be weaker than (9). Thus, the lower
bound for jJSj is given by Eq. (9), and the upper bound
is the same as in Eq. (7). The corresponding part of the
phase diagram is shown in Fig. 2.

If the condition (9) is broken, the CE spin structure
becomes unstable, and the CO state is melted [6]. Such a
melting will be accompanied by the formation of the new
FM bonds between zigzag chains. This will generally
destroy the unique insulating feature of the quasi-1D
zigzag chain, and the system will become metallic.

In summary, we have argued that the origin of the CO
AFM phase in manganites lies in the unique electronic
structure of the quasi-1D zigzag chain, which is the
building block of the CO manganites one should look at.
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