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Strong Magnetoresistance Induced by Long-Range Disorder
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We calculate the semiclassical magnetoresistivityrxx�B� of noninteracting fermions in two
dimensions moving in a weak and smoothly varying random potential or random magnetic field.
demonstrate that in a broad range of magnetic fields the non-Markovian character of the transpor
to a strong positive magnetoresistance. The effect is especially pronounced in the case of a r
magnetic field whererxx�B� becomes parametrically much larger than itsB � 0 value.
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The magnetoresistance (MR) is one of the most f
quently studied characteristics of the two-dimension
electron gas (2DEG). When the effect of disorder is d
scribed by a collision integral within the semiclassic
Boltzmann equation approach, the resistivity tensorr̂�B�
for an isotropic system has the Drude form

r̂�B� �
m

e2n

µ
t21 vc

2vc t21

∂
, (1)

where n is the carrier density,m the effective mass,
vc � eB�mc the cyclotron frequency, andt the transport
scattering time. In particular, the longitudinal resistivit
rxx is independent of the magnetic fieldB, rxx�B� �
r0 � m�e2nt, irrespective of the form of the impurity
collision integral. This result is solely determined b
the Markovian character of the transport assumed in
Boltzmann equation description.

Deviations from the constantrxx�B� are conventionally
termed a positive�negative MR, depending on the sig
of the deviation. The negative MR [1] induced by th
suppression of the quantum interference correction by
magnetic field is a famous manifestation of weak loca
ization. Another source of negative MR is the Altshule
Aronov correction to the conductivity due to enhanceme
of the electron-electron interaction by the diffusive motio
of particles [1]. Both these effects are of quantum natu
and lead to a correction of ordere2�h to the conductivity
sxx , and thus to a small correction torxx.

However, as we will show, already at the classical lev
there exists a nontrivial MR which can be much strong
than the quantum one, if the correlation lengthd of disorder
is sufficiently large,kFd ¿ 1 (wherekF is the Fermi wave
vector). This is due to memory effects which are neglect
in the collision integral description of disorder.

Transport properties of the 2DEG in a smooth ra
dom potential (RP)V �r� are of particular interest, since
in currently fabricated high-mobility semiconductor he
erostructures the disorder has long-range character.
high mobility of these samples is achieved by placing t
charged donor ions in a layer separated by a large d
tanced (kFd � 10) from the 2DEG plane. Assuming the
positions of these impurities to be statistically distribute
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with a sheet densityni, the correlation functionWV �r 2

r0� � �V �r�V �r0�� is given in momentum space by

W̃V �q� � �p h̄2�m�2nie
22qd . (2)

A new type of transport problem occurs in these sy
tems when a large magnetic fieldB � B1�2 � 2�hc�e�n
is applied such that the lowest Landau level is approx
mately half filled. The metallic state then observed ha
been described [2] in terms of composite fermions (CF’
moving in a weak effective field̄B � B 2 B1�2. The
CF’s are scattered by an impurity-induced random ma
netic field (RMF) dB�r� characterized by the correla-
tion function WB�r 2 r0� � �dB�r�dB�r0�� with Fourier
components

W̃B�q� � �2hc�e�2nie
22qd . (3)

While the above RMF is fictitious, a real long-rang
correlated RMF can also be realized in semiconductor h
erostructures by attaching superconducting [3,4] or ferr
magnetic [5,6] overlayers. We will study below the cas
of a weak RP or RMF, which means thatl ¿ d, where
l is the mean free path in zero average fieldB̄ � 0. Let
us stress that we consider a situation with only the smoo
disorder (RP or RMF) present. This should be contrast
with the starting point of [7], where the resistivity was as
sumed to be dominated by a white-noise RP while a we
long-range RMF was considered as a small perturbation

As one manifestation of the strongly non-Markovia
transport, it has been shown recently [8–10] that in
sufficiently strongB̄ the MR drops exponentially with
B̄ because of a “classical localization” effect caused b
adiabacity of the motion. This holds true for the motio
both in a RP [8] and in a RMF [9,10]. The condition o
this adiabatic regime isvct ¿ �l�d�2�3.

In this paper we study the region of smaller magnet
fields in which different non-Markovian processes becom
important. We find that the exponential falloff ofrxx is
preceded by a strong positive MR. The effect is especia
pronounced in the case of the RMF, where the increase
rxx is much larger (in the weak disorder limit) than its
zero-̄B valuer0 � m�e2nt.
© 1999 The American Physical Society 2801
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We first outline the physics of the effect on a qualitative
level. The zero-B̄ transport scattering rates in the RP and
RMF are given by [11]

1
t

�
1

2pm2y
3
F

Z `

0
dq q2W̃V �q� �RP� ; (4)

1
t

�

µ
e

mc

∂2 1
2pyF

Z `

0
dq W̃B�q� �RMF� . (5)

Let us now discuss the nature of the particle trajectories.
The change df of the polar angle of the particle velocity
in the time interval dt is given by

df � �myF�21nieij≠jV �r� dt �RP� ; (6)

df � �e�mc�dB�r� dt �RMF� , (7)

where n � v�jvj is the unit vector in the direction of the
velocity. Taking into account that the trajectory within
the correlation domain of the size �d is almost a straight
line, one gets (4) and (5). One source of the MR is the
bending of the trajectory within the correlation domain by
the magnetic field B̄. This leads to a small negative MR,
of the relative magnitude ��d�Rc�2 ø 1 [9,12]. There
exists, however, a much stronger effect related to returns
of the particle to spatial regions close to the starting point.
Under the condition vct ¿ 1 the particle trajectory is
a sequence of slightly distorted cyclotron circles. The
center of the orbit is shifted by a random vector d after
one cyclotron revolution, with �d� � 0, �d2

x � � �d2
y � �

2pl2��vct�3. The correlation of the elementary scattering
processes [Eqs. (6) and (7)] occurs in the vicinity of the
points where the cyclotron orbits intersect each other,
which leads to a correction to the resistivity

�Drxx�r0�1 � 	d��d2�1�2
3 �RP� ; (8)

�Drxx�r0�1 � d��d2�1�2 �RMF� . (9)

The same is valid for t � 2pn�vc (the nth cyclotron
revolution, n � 2, 3, . . .), with �d2� multiplied by n. For
the RP case the corresponding sum over n converges,P

`
n�1 n23�2 � z �3�2�, leading simply to the renormaliza-

tion of a numerical factor in (8). In fact, in this case the
above consideration can be made fully quantitative, and
the result agrees with what we will find below from the
Liouville equation (10). The corresponding positive MR,
Drxx�r0 � �d�l�3�vct�9�2, becomes of order unity at the
upper bound of the considered range of the magnetic fields,
vct & �l�d�2�3. Here the system enters the adiabatic
regime.

In the RMF case the sum over n is of the form
P

n21�2

and is thus determined by the upper cutoff, which is n �
vct. The resulting correction Drxx�r0 � �d�l� �vct�2

reaches a value of order unity at vct � �l�d�1�2, i.e.,
far from the adiabatic regime. At larger magnetic fields,
where Drxx�r0 ¿ 1, a self-consistent treatment is needed
(see below).

We describe now a formalism which allows us to
calculate the MR more systematically (see also [7]). We
2802
consider first the RMF case. The starting point is the
Liouville equation

�L0 1 dL�g�v, r, f� � cos�f 2 fE� ;

L0 � 2iv 1 yFn= 1
e

mc
B̄

≠

≠f
; (10)

dL �
e

mc
dB�r�

≠

≠f

for the deviation df�v, r, f� � eEyF
≠f0

≠e g�v, r, f� from
the equilibrium distribution function f0 � u�eF 2 e�.
Here E � E�cosfE, sinfE� is the electric field and n �
�cosf, sinf� the unit vector determining the velocity
direction. The current density is given by j � 2e 3R d2p

�2p h̄�2 vdf, which yields the conductivity tensor

ŝ � e2y2
FNF

Z df

2p

øµ
cosf
sinf

∂
�L0 1 dL�21

µ
cosf
sinf

∂T ¿
,

(11)

where NF is the density of states and the angular brackets
denote the averaging over configurations of the RMF
dB�r� with the correlation function (3).

Expanding (11) in dL, averaging over the disorder and
resumming the series (in the same way as it is done for a
quantum-mechanical Green’s function), one arrives at

r̂ � ŝ21 �
2

e2y
2
FNF

�L̂0 1 M̂� ;

L̂0 �

µ
2iv vc

2vc 2iv

∂
,

(12)

where M is the “self-energy” and the 2 3 2 matrix M̂ is
defined by

M̂ �
Z df

p

µ
cosf
sinf

∂
M

µ
cosf
sinf

∂T

. (13)

In zero B̄ the self-energy M is given in the leading ap-
proximation by the first term of the perturbative expan-
sion, M � 2�dL L21

0 dL�, yielding

Mxx � 2 2i

µ
e

mc

∂2 Z d2q
�2p�2

df

2p

3 sinf
W̃B�q�

yFq cos�f 2 fq� 2 v
sinf , (14)

where fq is the polar angle of the momentum q. Taking
into account that v should have an infinitesimal positive
imaginary part (v ! v 1 i0) and considering the limit
v ! 0, we get Mxx � 1�t with 1�t given by (5).
Equation (12) reproduces then the Drude resistivity, as
expected.

Now we calculate the B̄-dependent correction to (14)
determined by the return processes described above. For
this purpose, we have to replace the free propagator L21

0 �
	2iv 1 iyFq cos�f 2 fq�
21 entering (14) by the one
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describing the motion in the magnetic field in the presence
of disorder. At small q this would be simply the diffusion
propagator; however, since we are interested in the short-
scale physics, q * R21

c , the diffusion approximation is not
appropriate. Using the fact that the particle is scattered
only by a small angle within the correlation length d, we
can approximate the motion by a Fokker-Planck equation
corresponding to the diffusion in momentum space:

DMxx � 2

µ
e

mc

∂2 Z d2q
�2p�2 W̃B�q�

3
Z df

2p
sinfgD�v, q, f� , (15)

where gD is the solution of∑
2iv 1 iyq cos�f 2 fq� 1 vc

≠

≠f
2

1
t

≠2

≠f2

∏
gD�v, q, f� � sinf .

(16)

Now we make use of the fact that the solution of (16)
determines the spatial dispersion of the conductivity in the
situation of small-angle scattering [13,14]:

syy�v, q� � e2y2
FNF

Z df

2p
sinfgD�v, q, f� . (17)

At v � 0 one has syy�q k ŷ� � 0 [13]. For q k x̂ we
get, using the solution of (16) at vct ¿ 1 [14],

syy�0, q� �
2s0

vct

Z 2p

0

df

2p

Z f

2`
df0 sinf sinf0e2K�f,f0�

� 4s0J2
1 �qRc���qRc�2, (18)

where K�f, f0� � iqRc�sinf 2 sinf0� 2 	�qRc�2�
2vct
 �f 2 f0� and s0 � r

21
0 . This determines the

integrand of (15) for general orientation of q, with the
result for v � 0

DMxx �

µ
e

mc

∂2 t

pR2
c

Z `

0

dq
q

J2
1 �qRc�W̃B�q�

�
µ

e
mc

∂2 t

2pR2
c

W̃B�0� . (19)

In agreement with the above qualitative picture, the
main contribution to the integral comes from q � R21

c .
Therefore, we neglected the q dependence of W̃B�q� in
the second line of (19), in view of d ø Rc. The MR is
thus positive and quadratic in B̄,

Drxx�r0 � �B̄�B0�2 � 4a2�vct�2 � 2�d�l� �vct�2,
(20)

where B0 � �dB2�r��1�2 � W
1�2
B �0� is the amplitude of

the RMF fluctuations and a ø 1 is the parameter char-
acterizing the RMF strength [9,10], a � dv

�0�
c �yF with

v
�0�
c � eB0�mc. Equation (20) is valid for B̄ ø B0,
whereas the adiabatic regime begins at B̄ � B0a21�3. In
the intermediate range, B0 & B̄ & B0a21�3, the positive
MR gets large, Drxx�r0 ¿ 1. In this region, Eq. (19)
should be treated self-consistently, i.e., t in the right-
hand side should be understood as a renormalized scatter-
ing time, t21 � t

21
0 1 DMxx . The result for B̄ ¿ B0

is rxx�r0 � B̄�B0, or, in the form valid both below and
above B0,

rxx�r0 � 1�2 1 	1�4 1 �B̄�B0�2
1�2, (21)

which is our main result for the case of RMF. At B̄�B0 �
a21�3 the resistivity reaches its maximum rxx �
a21�3r0; in still higher fields rxx drops rapidly due to the
adiabatic character of motion.

We turn now to the RP scattering. The operator dL in
(10) then has the form

dL � dy�r�n= 1 	=dy�r�
n�
≠

≠f
, (22)

where dy�r� � V �r��pF is the spatial variation of the
Fermi velocity and n� � ẑ 3 n � �2 sinf, cosf�. At
zero B̄ we get, instead of (14),

Mxx � 2
2i

p2
F

Z d2q
�2p�2

df

2p
sinf sin�f 2 fq�

3
q2W̃V �q�

yFq cos�f 2 fq� 2 v
sinf sin�f 2 fq� ,

(23)

reproducing the result (4). To calculate the MR, we re-
place, as in the RMF case, the free propagator in (23)
by L21

D , where LD is the operator in the square brackets
in (16). Solving again the equation LDgD�v, q, f� �
sinf sin�f 2 fq� at vct ¿ 1, we find after some alge-
braic manipulations

DMxx �
1

2pp2
FyF

Z `

0
dq q2W̃V �q�

3

∑
coth

p�qRc�2

2vct
2 1

∏
.

In contrast to (19), the integral is determined by the
region of momenta q2 � vct�R2

c � �d2�21, as might be
expected from the above qualitative consideration. Since
d ø �d2�1�2, we can again neglect the q dependence of
W̃V �q�, which yields for vct ø �l�d�2�3

Drxx

r0
�

z �3�2�
4p2

tW̃V �0�
p2

FyFl3
�vct�9�2

�
2z �3�2�

p

µ
d
l

∂3

�vct�9�2. (24)

We have performed numerical simulations of the MR
for both types of disorder (RMF and RP). In Fig. 1 the
results for the RMF are shown, for three different strengths
of the disorder (a � 0.2, 0.083, 0.0138). At a ø 1,
the theoretical prediction of the strong positive MR (21)
2803
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FIG. 1. Magnetoresistivity [normalized by the Drude value
r0 � m�e2nt with 1�t given by (5)] in random magnetic field
from the numerical simulations for three different strengths of
the disorder; the full line corresponds to Eq. (21).

crossing over to the negative one at B̄ � B0a21�3 is fully
confirmed by the data. At moderately small a (a � 0.2
in Fig. 1) the positive MR still exists, but becomes weak;
this is the region of a relevant to the composite-fermion
description of the vicinity of half filling of the lowest
Landau level (n � 1�2). The numerically calculated MR
for a � 0.2 0.3 agrees well [10] with the experimental
data [15] around n � 1�2. At large a $ 0.5 the region
of positive MR disappears, and rxx drops monotonously
with B̄ [10].

A pronounced positive MR induced by a real long-range
RMF was also observed in [5]. While a direct application
of our results is not possible in this case, because of the
presence of a strong RP with a much shorter correlation
length, we believe that the physics of the effect is essen-
tially the same.

The numerically found MR for the RP case (Fig. 2)
shows good agreement with the theoretical result (24) up

0 100 200
ωc τ

0

1

2

3

xx
(B

)/
0

l/d=290

ρ
ρ

FIG. 2. Magnetoresistivity in a random potential from com-
puter simulations in comparison with Eq. (24).
2804
to Drxx�r0 � 1. At larger B̄, rxx deviates from (24) and
starts to decrease, as expected.

In conclusion, we have demonstrated that the 2D
fermion gas shows for weak long-range correlated disor-
der a strong positive MR in moderately strong magnetic
fields 1 ø vct & �l�d�2�3, due to the non-Markovian
character of transport. The effect is especially pronounced
in the case of the RMF. Our findings explain, in particu-
lar, the positive MR of composite fermions observed ex-
perimentally around n � 1�2.
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