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Finite-Temperature Monte Carlo Calculations for Systems with Fermions
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We present a quantum Monte Carlo method which allows calculations on many-fermion systems at
finite temperatures without any sign decay. This enables simulations of the grand-canonical ensemble at
large system sizes and low temperatures. Both diagonal and off-diagonal expectations can be computed
straightforwardly. The sign decay is eliminated by a constraint on the fermion determinant. The
algorithm is approximate. Tests on the Hubbard model show that accurate results on the energy and
correlation functions can be obtained.

PACS numbers: 71.10.Fd, 02.70.Lq, 74.20.–z
The quantum Monte Carlo method for simulating grand-
canonical ensembles, originally formulated by Blanken-
becler, Scalapino, and Sugar (BSS) [1], is widely applied
in areas spanning condensed-matter, high-energy, and nu-
clear physics. The method allows essentially exact cal-
culations of finite-temperature equilibrium properties of
interacting fermion systems. It expresses the partition
function as a many-dimensional integral over a set of ran-
dom auxiliary fields. The many-dimensional integral is
then computed by Monte Carlo (MC) techniques.

As all current fermion quantum Monte Carlo methods,
however, the BSS algorithm suffers from the well-known
sign problem [2,3]. The integrand of the partition function
is not all positive. Indeed its average sign approaches zero
as the temperature is lowered. As a result, contributions
from the Monte Carlo samples largely cancel. The par-
tition function, which is given by the difference between
the positive and the negative, becomes a vanishingly small
quantity compared to the MC noise. The computational
cost for fixed statistical accuracy scales exponentially with
system size and inverse temperature. While for many
problems the BSS algorithm is the most, sometimes only,
feasible approach, the sign problem has remained com-
pletely uncontrolled in the algorithm. This has severely
limited the temperatures and sizes accessible and has
prohibited studies of a variety of interesting problems
in correlated systems, particularly concerning true phase
transitions.

In this Letter, we present a finite-temperature method
which is free of any decay of the average sign and which
retains many of the advantages of the BSS formalism,
thus allowing grand-canonical calculations at lower tem-
peratures and larger system sizes with favorable scaling.
Below we first derive a set of exact constraints on the aux-
iliary fields which eliminates any negative contribution to
the partition function. An approximation is then made to
impose these constraints in the MC sampling to control
the sign problem. We develop an algorithm to effectively
carry out the MC sampling under the approximate for-
malism. We illustrate the method by applying it to the
one-band Hubbard model. We show that accurate results,
on both the energy and various correlation functions, can
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be obtained with the new method, even with simple forms
of the approximate constraint.

The expectation value of a physical observable O is

�O� �
Tr�Oe2bH�
Tr�e2bH�

, (1)

where b � 1�kT is the inverse temperature. The chemi-
cal potential term is implicit in the Hamiltonian H. The
partition function in the denominator can be written as

Z � Tr�e2bH� � Tr�e2DtH · · · e2DtHe2DtH� , (2)

where Dt � b�L and L is the number of “time slices”
on the right-hand side.

We next write the many-body operator e2DtH in terms
of single-particle operators. This is possible for most
Hamiltonians or Euclidean actions of interest. For ex-
ample, the Hubbard-Stratanovic transformation [4] can be
applied for a Hamiltonian H which contains one- and
two-body terms, denoted by K and V , respectively. This
transformation replaces the two-body term e2DtV by one-
body interactions with a set of random external fields.
Combining the result with the one-body term e2DtK , we
can write

e2DtH 	
X
x

B�x� , (3)

where x denotes the random external auxiliary fields and
B�x� is a single-particle operator. The sum over all
auxiliary fields recovers the interaction. For simplicity
we have written the integration over x as a discrete sum.
We have also suppressed spin indices, as well as the
distribution function of x. The approximation in Eq. (3)
is from the Trotter error, which is of O �Dt2� or less.

In the standard BSS formalism, Eq. (3) is substituted
into Eq. (2). The trace over fermion degrees of freedom
is then performed analytically [1,5], which yields

Tr�e2bH� �
X
X

det�I 1 B�xL� · · · B�x2�B�x1�� , (4)

where X � 
x1, x2, . . . , xL� denotes a complete path in
auxiliary-field space. If the size of the single-particle
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basis (e.g., number of spatial lattice sites) is N , the single-
particle propagator B�xl� is an N 3 N matrix and I is
the corresponding unit matrix. The fermion determinant,
which we will denote by D�X�, can be computed for each
X. The sum over all paths can therefore be evaluated by
MC methods. However, D�X� is not always positive. As
illustrated in Fig. 1a, the physical contribution comes from
the small difference between the positive and negative
components. The MC samples of X are drawn from
the probability distribution defined by jD�X�j. As b

increases, D�X� approaches an antisymmetric function and
its average sign vanishes exponentially. The variance in
the MC estimate of Eq. (1) thus diverges, and the sign
problem occurs.

A main obstacle to understanding and controlling the
problem lies in the implicit and complex nature of the
path-integral picture in this formalism. To gain insight,
we return to the original form of Z in Eq. (2). We
will use B to denote e2DtH and imagine the following
thought experiment to generate all possible auxiliary-field
paths X. Beginning with Tr�BB · · ·BB�, we substitute
B with Eq. (3), one at a time from right to left. After
l such steps, the partition function can be written asP


x1,x2,...,xl � Pl�
x1, x2, . . . , xl�,B�, where Pl is

Pl�
x1,x2, . . . , xl�,B�
� Tr�BB · · ·B| {z }

L2l

B�xl� · · · B�x2�B�x1�� . (5)

As we proceed, we construct paths by including all pos-
sible values of xl . After L steps, all B’s are replaced and
all complete paths X are generated. Note that, while not
the case in general, the trace in Eq. (5) can be performed
when l � L, which, as expected, gives D�X� of Eq. (4).

We now examine the procedure more closely, first at
Dt ! 0, where Pl is continuous in l, the length of the
partial path. In particular, we consider the case when Pl

becomes zero for a certain partial path 
x1, x2, . . . , xl�.
This means that, after the remaining L 2 l steps have
been finished, the sum over all possible configurations of

xl11, xl12, . . . , xL� will simply reproduce the B’s in (5),

FIG. 1. Schematic illustration of the sign problem and the
constraints to control it. Part (a) shows the integrand D�X� of
the partition function Z. The X axis represents an abstraction
of the many-dimensional auxiliary-field paths X; each point
denotes a collection of X’s, e.g., in the sense of a bin in a
histogram. In standard MC, jD�X�j is sampled, while only
the shaded area contributes. Part (b) shows Pl [Eq. (5)] as a
function of the length of the partial path, l, for several paths.
When Pl becomes 0, ensuing paths (dashed lines) cancel. Only
complete paths with Pl . 0 for all l (solid line) contribute in
Z; they lead to the shaded area in (a).
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leading to zero by definition. In other words, any complete
path whose first l elements are 
x1, x2, . . . , xl� is “noise”;
the contributions of such paths cancel in Z. The signature
of a noise path is Pl � 0 for at least one l. Since P0 . 0,
this shows that a complete path contributes if and only if
the following L conditions hold:

Pl�
x1, x2, . . . , xl�,B� . 0, l � 1, 2, . . . , L . (6)

If we impose the constraints in Eq. (6) in our procedure
to generate the paths, we can eliminate all noise paths
while selecting all contributing paths. The constraints are
equivalent to having an absorbing boundary at the Pl � 0
axis in Fig. 1b, thereby making the probability distribution
of the generated complete paths vanish smoothly at the
axis. This boundary condition (BC) eliminates complete
paths that come in contact with the axis at any point, which
cancels out the antisymmetric part of D�X� in Fig. 1a. The
algorithm remains exact.

At finite Dt, paths are discrete. But the BC is the same
for the underlying continuous paths. To the lowest order in
Dt, the constraints in Eq. (6) allow imposition of the BC
under the discrete representation; the contact point (“triple
point” in Fig. 1b) is approximated by the first l for which
Pl , 0. A higher order approach, which we use, is to
interpolate between this l and l 2 1, with the probability
to terminate at l 2 1 approaching 1 smoothly if Pl21 ! 0
[6]. It is important to note that, in both approaches, the
finite-Dt error vanishes as Dt ! 0.
B is not known in practice. We replace it by a

known trial propagator BT . The constraints now yield
approximate results, which become exact if BT is exact.
If BT is in the form of a single-particle propagator, we
can analytically evaluate the trace in Eq. (5) by making
use of the same identity [5] that produced Eq. (4). The
constraints in (6) can now be written as

P T
l � det

"
I 1

√
L2lY
m�1

BT

!
B�xl� · · · B�x1�

#
. 0 (7)

for each l on 1 # l # L, where we have introduced the
shorthand P

T
l for Pl�
x1, x2, . . . , xl�, BT �.

The idea of the new method is then to generate MC
samples of X which both satisfy the conditions in (7) and
are distributed according to D�X� [7]. To realize this effi-
ciently, we construct the following algorithm, which builds
directly into the sampling process both the constraints and
some knowledge of the projected future contribution. In
terms of the partial contributions P T

l , the fermion deter-
minant D�X� can be written as

D�X� �
P

T
L

P
T

L21

P
T

L21

P
T

L22
· · ·

P
T

2

P
T

1

P
T

1

P
T

0
P T

0 . (8)

We construct the path X in L steps, corresponding to sto-
chastic representations of the L ratios in Eq. (8). We
start from P

T
0 , i.e., L BT ’s in place of B’s, with overall

weight 1. Then, successively from l � 1 to L, we (a) pick
an xl from the conditional probability density function
p�xl jxl21, . . . , x2, x1� . 0 defined by �P T

l �P T
l21��C and
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(b) multiply the overall weight by the normalization fac-
tor C �

P
xl
P

T
l �P T

l21. The algorithm allows xl to be
selected according to the best estimate of its potential con-
tribution, reflecting the integrated (i.e., with dashed-line
paths in Fig. 1b already canceled out) effect of all subse-
quent paths from xl . Note that the probability distribution
for xl vanishes smoothly as P

T
l approaches zero, and the

constraints are naturally imposed.
We simultaneously propagate an ensemble of paths.

The contribution of each path X in Z is given by its fi-
nal weight. Given X, we can calculate both equal-time
and (imaginary) time-dependent correlations through the
single-particle Green’s functions [5]. The expectation in
Eq. (1) is a weighted average over X. The statistical accu-
racy improves as the procedure is repeated and more paths
are generated.

We mention several technical issues. (i) We have
chosen a noninteracting propagator, e2DtK , as BT . More
general mean-field propagators, including ones with
imaginary-time dependence, can be incorporated straight-
forwardly. (ii) We divide each step for each path into
substeps, in which we apply (a) and (b) to individual
components of xl . This simplifies p and C (of the sub-
steps) [1,6]. (iii) As paths are evolved, products of B�x�
and BT must be stabilized against round-off errors [8].
(iv) The weights of paths fluctuate as they are propagated.
We apply a population control mechanism [9] to improve
efficiency. (v) Instead of using branching random walks to
generate paths, it is possible to use a Metropolis scheme in
which an overall acceptance-rejection procedure is applied
after a potential complete path is proposed by sampling
Eq. (8). We have not yet explored such a scheme. A
detailed account of these and other algorithmic issues will
be published elsewhere.

The algorithm we have described provides the finite-
temperature counterpart of the ground-state constrained
path Monte Carlo (CPMC) method [6]. The latter, which
has been applied to study various lattice models, eliminated
the sign decay in T � 0 K auxiliary-field calculations by
constraining paths in Slater determinant space with a trial
ground-state wave function jcT � [6,10]. The chief diffi-
culty in generalizing the concept of a constraining wave
function or density matrix [11] to the finite-temperature
formalism is twofold: (i) In this formalism, paths do not
originate or end at the same point in Slater determinant
space; different paths would thus require different con-
straining conditions. Indeed paths do not even have the
same “dimension.” (ii) With the analytical evaluation of
the trace, the path-integral picture is implicit and would
likely prevent implementation of such constraints. The
new algorithm overcame the difficulty. It also provides
a unified view of the zero- and finite-T algorithms. The
constraining jcT � in T � 0 K CPMC can be understood
in terms of BT operating on an arbitrary initial state.

We now apply the new algorithm to study the one-band
Hubbard model. The model consists of interacting elec-
trons on a square lattice. The Hamiltonian H � K 1 V
is given by K � 2t
P

�ij�s�cy
is

cjs 1 H.c.� 2 m
P

i�ni" 1

ni#� and V � U
P

i ni"ni#, where c
y
is creates an electron

of spin s on site i, nis � c
y
iscis is the electron number

operator, and � � indicates near neighbors. The on-site
Coulomb repulsion is U . 0. In connection with high-Tc

superconductivity, the Hubbard model has been the subject
of intense theoretical effort for the past decade. The model
provides a good test case, with both its challenging nature
and the availability of certain benchmark data. Quantities
of particular theoretical and experimental interest include
the momentum distribution n�k� and the d-wave electron
pairing correlation Pd�l� [12].

We study lattices of size
p

N 3
p

N with periodic
boundary conditions. The desired electron density �n� �
�
P

is nis��N is achieved by adjusting m. Our trial propa-
gator BT is e2DtK multiplied by e2DtnT

P
is

nis , where nT

is a parameter. The second term in BT accounts for e2DtV

in the sense of the restricted Hartree-Fock method.
In Fig. 2 and in Table I, we show results for a 4 3 4,

U � 4 system where the sign problem is the most severe.
This limits the range of temperatures where accurate
calculations can be done with the standard algorithm. At
b � 12, the average sign in BSS, �s�, is projected to be
less than 0.01 from the exponential decay rate [3] and the
numbers in Table I; this b is thus not reachable by BSS
with present computing power [15]. The system hence
presents a challenging test case for the current algorithm.
At high T , our algorithm gives results in excellent agree-
ment with BSS results [14], which are exact. At low T , it
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FIG. 2. Comparison with available data for a 4 3 4 system
with U � 4 and �n� � 0.875. The main graph shows the en-
ergy. The diamond at T � 0 is from exact diagonalization.
The inset shows the density-density correlation function be-
tween near-neighbor sites. The algorithm accurately predicts
the development of strong antiferromagnetic correlation as T
decreases, despite the use of a constraining propagator BT
which by itself gives incorrect physics (flat line). At low T ,
the results converge to that of T � 0 K CPMC (triangle). Er-
ror bars in “current” are smaller than symbol size and are not
shown [13]. BSS results are from Ref. [14]. For compari-
son, squares at T � 0.1667 show BSS results with the sign
neglected, which is an uncontrolled approximation [3].
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TABLE I. Further comparison of the current method with
BSS and exact diagonalization (ED), on the same system as that
of Fig. 2. G�l� is the average Green’s function �cy

i1lscis�, and
Pd�l� the d-wave pairing correlation, at separation l � �lx , ly�.
The average sign in BSS is given by �s�. In the last row, ED
results are shown for G, while ground-state CPMC results are
shown for Pd ; the latter is not exact. Numbers in parentheses
indicate statistical errors in the last digit.

b �s� G�1, 0� G�2, 2� Pd�2, 1�

3 Current 0.1631(1) 20.0415�1� 0.0625(2)
BSS 0.99 0.1631(1) 20.0418�1� 0.0630(3)

6 Current 0.1663(3) 20.0470�4� 0.077(2)
BSS 0.44 0.1662(2) 20.0465�2� 0.083(3)

20 Current 0.166(1) 20.050�1� 0.078(2)
` Exact 0.167 20.051 0.078(2)

reaches convergence and leads to results consistent with
those from ground-state CPMC and in good agreement
with those from T � 0 K exact diagonalization [16].

In Fig. 3, we show new results for an 8 3 8 lattice. The
electron filling of �n� � 0.82, which is in the physically
relevant region, shows the worst sign problem, with �s�
in BSS falling to �0.1 at b � 6 [8]. Accurate and
systematic calculations have therefore not been possible
on this system. The new algorithm, on the other hand,
required only modest computing time (about 2 days on
a single processor of an SGI Origin200 workstation for
b � 16) to reach the excellent statistical precision shown
in the figure. As T decreases, the Fermi surface appears to
contract along �p, p�, while bulging along �p, 0�. The d-
wave electron pairing correlation at large pair separations
increases with decreasing T . The noninteracting system,
however, also shows the same behavior. In fact, Pd�l�
in the latter is larger than the corresponding interacting
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FIG. 3. Temperature dependence of the momentum distribu-
tion (main graph) and d-wave pairing correlation (inset) for an
8 3 8 system with U � 4 and �n� � 0.82. [Recall n�k� is
the Fourier transform of G�l�.] As temperature (1�b) lowers,
the momentum distribution, shown along two directions in k
space, becomes more anisotropic, and the long-range part of
the d-wave pairing correlation increases.
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results, consistent with results from ground-state CPMC
[17]. More systematic calculations, at different �n�, U,
and system size, are currently being performed.

In summary, we have presented a quantum MC algo-
rithm which allows finite-temperature, grand-canonical-
ensemble simulations of fermion systems without any
decay of sign. The method is approximate. We have
shown that accurate results can be obtained with a simple
constraining propagator BT . An improved BT will lead to
improved results, and the method becomes exact when BT

is exact. The algorithm makes possible calculations under
the field-theoretical formalism whose required computer
time scales algebraically, rather than exponentially, with
inverse temperature and system size. With the second-
quantized representation, it complements the restricted
path-integral MC method [11]. The algorithm automati-
cally accounts for particle permutations and allows easy
computations of both diagonal and off-diagonal expecta-
tions, as well as imaginary-time correlations.
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