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Dynamics of Discrete Solitons in Optical Waveguide Arrays
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By using a nonlinear waveguide array we experimentally demonstrate dynamic features of solitons
in discrete systems. Spatial solitons do not exhibit these properties in continuous systems. We
experimentally recorded nonlinearly induced locking of an initially moving soliton at a single
waveguide. We also show that discrete solitons can acquire transverse momentum and propagate
at an angle with respect to the waveguide direction, when the initial excitation is not centered on a
waveguide. This is to our knowledge the first time that the effect of the Peierls-Nabarro potential has
been observed in a macroscopic system.

PACS numbers: 42.65.Tg, 42.65.Wi, 42.82.Et, 63.20.Pw
Within the past few decades, there has been a constant
interest in nonlinear discrete systems. This is due to the
fact that matter itself is discrete, i.e., it consists of many
single elementary units. If the spatial scale of an excitation
approaches the size of its individual constituents, a con-
tinuous approach fails to give an accurate picture and the
discreteness of the system must be taken into account. For
example, energy transport phenomena through polarons,
excitons, and defects in polymers [1] relies on the fact that
the excitation is hopping from molecule to molecule and
depends critically on the internal structure. The analytical
descriptions of several macroscopic systems also result in
an effective discretization.

Many discrete systems of a quite different origin can
be depicted by the same set of evolution equations. The
energy transport on molecular chains [1], the motion
of localized waves on discrete electrical lattices [2],
and optical field propagation in waveguide arrays [3]
are all described by the discrete nonlinear Schrödinger
equation (DNLSE), even though the size of these systems
differs by many orders of magnitude. Those similarities
allow the identification of basic principles and effects of
discreteness, which are much more general than the model
from which they are derived.

One important feature of the DNLSE is its localized
solitonlike solution. We recently reported the first experi-
mental realization of discrete solitons in nonlinear wave-
guide arrays [3]. In the low power limit, the optical field
spreads over the whole array due to the evanescent cou-
pling between nearest neighbor waveguides. When the
power is increased, a narrowing of the output field distri-
bution is observed until a discrete soliton is formed. Here
we report experimental investigations of the dynamics of
these discrete solitons. In particular, we are interested in
the differences between discrete solitons and spatial soli-
tons propagating in slab waveguides [4]. When a discrete
soliton spans many individual waveguides, it can be for-
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mally shown to be equivalent to its continuous counter-
part [5]. However, many differences are expected when
the soliton is confined in just a few waveguides. The dif-
ferences with the continuous case become obvious if such
a soliton is forced to move across the array. There is no
Galilean invariance in the waveguide array and the dis-
crete soliton tends to propagate along the waveguides [6]
giving rise to a characteristic dynamical behavior.

In addition to this fundamental interest, the practical
importance of waveguide arrays should be mentioned as
well. They are regarded as promising candidates for all-
optical signal switching, routing, and steering applications.
The individual waveguides are compatible with fibers and
other waveguide devices, simplifying input and output
into such elements. In what follows we demonstrate that
nonlinear effects can be effectively employed in order to
guide signals into desired output channels [6].

In the idealized case (no losses, continuous wave
excitation) the evolution of the field amplitude an of the
nth element of an infinite waveguide array is described by
a DNLSE as
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where C is the coupling coefficient and g is the nonlinear
parameter [5]. The total power P and the Hamiltonian H,
defined as
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are conserved during propagation [6]. It should be noted
that in quantum mechanical systems those quantities have
a different meaning. P accounts for the norm of the wave
function and H denotes the energy containing the kinetic
part Cjan 2 an21j

2.
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We first discuss stationary solutions localized on a few
waveguides. For each power level we find one solution
centered on a single waveguide and one centered in be-
tween two waveguides (see Fig. 1). Only the first one
is stable and represents a minimum of the Hamiltonian.
If a soliton is forced to move sideways, it has to jump
from waveguide to waveguide, passing from a stable to an
unstable configuration. The difference between the Hamil-
tonians in the respective cases— the so-called Peierls-
Nabarro potential (PNP)—accounts for the resistance that
the soliton has to overcome during transverse propaga-
tion [7]. For increasing power levels, the PNP increases
(see Fig. 1) resulting in a strong localization of the soli-
ton, mainly in a single waveguide which is effectively de-
coupled from the rest of the array. As proposed recently,
this might be the basis of a power dependent steering [6].
We note that in the respective continuous system—spatial
solitons in a slab waveguide—every phase gradient im-
posed onto the initial beam results in a corresponding tilt
of the soliton motion [8].

In order to investigate the dynamical behavior of dis-
crete solitons, we used the same experimental setup as
in Ref. [3]. The sample under investigation was a 6 mm
long array consisting of 41 rib waveguides of 4 mm width
and with a uniform spacing of 5 mm between each of
them. The array was etched 0.95 mm on top of an
AlGaAs slab waveguide composed by a guiding layer
of Al0.18Ga0.82As, 1.5 mm thick, sandwiched between
two layers of Al0.24Ga0.76As. These upper and lower
claddings were 1.5 and 4.0 mm thick, respectively. The
sample was mounted on top of a piezoelectrically driven
translator to control the spatial position of the excitation.
We launched 180 fs long pulses with a maximum peak
power of 1.5 kW into the central waveguide at a wave-
length of 1.53 mm, which is below half the band gap of
the AlGaAs, resulting in the suppression of two-photon

FIG. 1. Peierls-Nabarro potential Hamiltonian versus guided
power for solitons centered on a waveguide and in between two
waveguides. Inset: field shapes of the two types of solitons for
a peak power of 1500 W (vertical dashed line).
absorption. In order to avoid damage of the input facet
and to increase the coupling efficiency we used an ellip-
tically shaped input beam with a height of 3 mm and a
width of 9 mm. The image of the optical field at the out-
put facet was recorded with an infrared camera. Note that
since the width of the incident beam is about the same as
the array period, the excitation is effective even when it
is not centered on a waveguide. In particular, when the
beam is scanned across the input facet, the change in the
coupling efficiency is less than 5%.

To interpret the experimental results, we modeled the
pulse dynamics with the following set of equations [6]:
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This equation adds to the idealized DNLSE [Eq. (1)],
the temporal effect of pulsed excitation, the reduction
of power due to linear absorption, and nonlinear three-
photon absorption. In our model, the Kerr nonlinearity
amounted to g � 3.6 m21 W21 for the TE polarization,
the coupling constant was C � 0.82 mm21, the linear
absorption coefficient was a1 � 0.9 cm21, and the three
photon absorption coefficient was a3 � 1024 m21 W21.
Although the dispersive effects are weak (for 180 fs
pulses and D � 1350 ps2

km , a linear pulse only broadens
by a factor of 1.2), we have to take into account that
the coupled power varies along the temporal profile
continuously between zero and an upper value of about
1.5 kW. Therefore we expect to see a certain average of
different soliton shapes, but still a clear demonstration of
the effects envisaged.

In fact we found the results obtained for an averaged
model on the basis of Eq. (1) not to differ too much
from those following from a more involved simulation
based on Eq. (3). Although the influence of dispersion
is amplified by the nonlinearity and the high power
pulse is broadened by a factor of about 2 [see inset in
Fig. 2(a)] the pulse profile around the center remains flat.
In our experimental situation the transient behavior results
mainly in an effective damping. Effects as predicted from
simplified theories based on Eq. (1) still occur, but with
slight variations and for different power levels. However,
we would like to note that in other cases, such as in longer
arrays or for anomalous dispersion, the temporal behavior
can affect the steering properties of the array [9].

The lateral motion of the solitons was induced by a very
small tilt of the input beam of 0.4 6 0.1±, corresponding
to a phase difference of �0.08�p between adjacent wave-
guides. The output intensity distribution as a function
of input power is shown in Fig. 2(b). At low power we
observed the field maximum at the output to shift by about
eight waveguides away from the input waveguide. This
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FIG. 2. Power dependent soliton steering by an externally
induced velocity. Output field distribution for an initial tilt
of the beam of 0.4 6 0.1±. (a) Experimentally recorded power
distributions for high (solid line) and low (dashed line) power.
Inset: autocorrelations measured at high (1500 W) power; gray
area: input pulse; bold line: output pulse in the center of
the beam; thin line: output pulse in the wings of the beam.
(b) Experimentally recorded field distribution at the output
for varying power levels. (c) Simulation of (b) according to
Eq. (3).

corresponds to an overall distance of 72 mm. In a slab
waveguide the same tilt would yield a shift in the output
field distribution of only 14 mm. This enhanced sensitivity
of the array to phase tilts is mainly due to the different
nature of discrete diffraction. When a single waveguide is
excited, much more power is transferred to the wings of the
field distribution compared with the continuous case. As
the power is increased, a soliton is formed. The soliton
transverse velocity becomes lower and lower. The peak
of the output field moves closer to the input waveguide,
until it finally locks to it at about 1 kW of input peak
power. The simulation using Eq. (3), shown in Fig. 2(c),
reproduces most of the details observed in the experiments.
This example is a clear demonstration that the Galilean
invariance of the continuous system ceases to hold when
discreteness starts to play a role.
2728
In additional experiments we also investigated less
confined solitons, which were created by much wider
beams of smaller power (beam width �20 mm, peak
power �500 W). As predicted in [6] their ability to move
across the array was considerably increased and almost no
difference to the continuous case was observed.

While in the situation described above an initial side-
ways motion is damped and finally suppressed completely
with increasing soliton power, we demonstrate that dis-
creteness can also induce an acceleration of the soliton.
For that purpose we make use of the fact that the over-
all coupling efficiency is practically independent from the
spatial position of the excitation. In a different experi-
ment, we fixed the power at its maximum value, scanned
14 mm across the input facet, and recorded the resulting
field pattern at the output facet, as shown in Fig. 3(a).
The scanning spanned the distance between almost three
waveguide centers, so that in the middle of the image (cor-
responding to the vertical solid line) the field is precisely
centered on a waveguide. The good agreement between
experimental and numerical results based on Eq. (3) [see
Figs. 3(b) and 3(c), respectively] suggests that the ob-
served effects can be still understood using coupled mode
theory. For all input conditions [see, e.g., the two field
distributions displayed in Fig. 3(a)] the output distribu-
tions are much more localized than in those obtained in
the linear case, and the amount of radiation emitted is very
low. Simulations suggest that for high induced velocities
the energy loss for the soliton is about 10%. Therefore,
we conclude that the entire beam always behaves like a
soliton. We note that the displacement of the field at the
output facet is up to 10 times larger than the initial shift
of the input beam. The soliton has gained a considerable
transverse momentum, although no initial phase tilt was
introduced. It should be pointed out that the input beam,
which is wide enough to excite more than one waveguide,
is uniform in phase. Deviations from normal incidence
are not bigger than 60.1±. The transverse soliton motion
is not explained by the structure of the input beam.

In order to understand these results, we first note that
for symmetry reasons the light will propagate along the
waveguide direction when a symmetric excitation field
is either centered exactly on a waveguide (solid line
in Fig. 3) or in the middle between two waveguides
[dashed line in Figs. 3(b) and 3(c)]. In the later case,
an unstable soliton is excited [7]. In all other cases,
the asymmetry between the power levels in the input
waveguides induces a phase difference through the action
of the Kerr nonlinearity. This phase tilt steers the
field towards the waveguide with high power, thereby
amplifying the initial deviation from the balanced state.
This is precisely the source of the instability of the soliton
with the higher PNP, which is steered away by any small
power imbalance. Indeed, we observe in Fig. 3 that when
the excitation is in between waveguides (dashed lines
at 64.5 mm), the output position changes very rapidly.
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FIG. 3. Soliton steering by internally induced velocity. Out-
put field distribution for fixed input peak power of �1500 W
as a function of the input beam position. (a) Experimentally
recorded power distributions for two input positions relative to
the central guide, (b) output field distributions for various po-
sitions of the initial excitation (solid line: beam centered on a
waveguide; dashed lines: input beam centered in between two
waveguides), (c) simulation of (b).

Even small changes of the input beam position caused
the output field to sweep from 225 to 125 mm. This
behavior is due to the fact that the soliton has to preserve
both its total power and its Hamiltonian. The excess
Hamiltonian of the unstable initial state is transferred into
kinetic energy causing the soliton to move across the
array. A similar mechanism does not exist in continuous
systems because momentum conservation does not allow
a resting solution to speed up without emitting radiation.
From the point of view of applications, the latter feature
can be interpreted as a highly efficient power dependent
steering. Again it has to be emphasized that the last result
is strongly related to the discrete nature of the excitation.
We repeated this experiment using a wider input beam
(20 mm at FWHM) of about 500 W peak power, which
created a much less confined soliton, the PNP of which
was almost zero (see Fig. 1). In this case, the output
distribution was practically invariant under translation of
the input.

In conclusion, we have shown that the dynamical non-
linear properties of discrete systems differ considerably
from those of continuous systems. We experimentally
demonstrated that initially moving solitons are captured at
the initial waveguide if a certain power level is reached.
On the other hand, the decay of unstable solitons, centered
between two waveguides, may result in a considerable lat-
eral motion across the array. We found that a small dis-
placement of the input beam can be amplified at the output
facet by up to a factor of 10. All these dynamical proper-
ties are power dependent and may therefore be employed
for all-optical switching and routing applications.
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