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Boundary S Matrix and the Anti–de Sitter Space
to Conformal Field Theory Dictionary
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An S matrix analog is defined for anti–de Sitter (Ads) space by constructing “in” and “out” states
that asymptote to the timelike boundary. A derivation parallel to that of the Lehmann-Symanzik-
Zimmermann formula shows that this “boundary S matrix” is given directly by correlation functions
in the boundary conformal theory. This provides a key entry in the AdS to conformal field theory
dictionary.

PACS numbers: 11.25.Sq
The conjectured anti–de Sitter (AdS)/conformal field
theory (CFT) correspondence [1] has offered a promising
new window into the dynamics of string and M theory.
But in order to exploit this powerful framework, we must
decipher the holographic relationship between the bulk and
boundary theories. Gubser et al. [2] and Witten [3] made
important progress in this regard by providing a CFT to
AdS dictionary: They show how to derive CFT correlation
functions from the bulk theory in AdS. This has allowed
the successful calculation of various CFT correlators.

However, in order to study bulk physics, and in particu-
lar to understand the undoubtedly profound implications
of holography, a reverse dictionary is needed: We need
to know which bulk quantities can be calculated, and
how to calculate them, from the boundary CFT. Another
important and closely related question is how to treat
scattering in AdS. Because of the periodicity of particle
orbits and lack of ordinary asymptotic states in AdS, a
conventional S matrix cannot be defined (see [4] for more
discussion). However, Ref. [4] outlined the definition of
an AdS analog of the S matrix in terms of scattering of
states from the timelike infinity. References [5,6] gave
a related definition in the infinite-N limit. The purpose
of this paper is to go further and provide an intrinsic
and explicit definition of this “boundary S matrix” for
arbitrary N , and to give a precise relation between it and
the CFT correlators. The discussion also clarifies the
relation between the framework of [5,6] and that of [4].
Other recent treatments of related aspects of the AdS/CFT
dictionary include Refs. [7–9].

To summarize in advance, the boundary S matrix will
be defined as an overlap of certain “in” and “out” states.
These will be defined so that they correspond to particles
asymptotic to the timelike boundary of AdS in the past
and/or future. An AdS analog of the Lehmann-Symanzik-
Zimmermann (LSZ) formula can then be derived and
can relate this S matrix to the bulk correlation functions.
Finally, the results of [3] are used to rewrite the boundary
S matrix in terms of the CFT correlation functions. An
extremely simple relationship results: The boundary S
matrix equals the corresponding CFT correlator. This
serves as a key entry in the AdS to CFT dictionary.
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For simplicity we will consider scalar fields, with action

S � 2
Z

dV

∑
1
2

�=F�2 1
m2

2
F2 1 U�F�

∏
, (1)

where U summarizes the interaction terms. The general-
ization to other fields should be straightforward. We will
work in global coordinates x � �t, r, V� for AdSd11,

ds2 � R2�2 sec2rdt2 1 sec2rdr2 1 tan2rdV2
d21� ,

(2)

although translation to Poincaré coordinates should also be
straightforward.

Certain facts about the solutions to the free equations
will be useful in the following. The effective gravitational
potential of anti–de Sitter space confines particles to its
interior. Solutions to the free equation

�� 2 m2�f � 0 (3)

therefore exist at arbitrary frequency v, but are only
normalizable (in the Klein-Gordon norm) for a discrete set
of frequencies. Define the parameters h6 and n by

2h6 �
d
2

6 n; n �
1
2

p
d2 1 4m2 R2 . (4)

Normalizable solutions with definite angular momenta are
of the form

fnl �m � e2ivnl tYl �mxnl�r� (5)

and have asymptotic behavior

xnl�r�
r!p�2
! knl�cosr�2h1 (6)

for some constants knl . Explicit formulas for these solu-
tions are given in [10]. The discrete eigenfrequencies are

vnl � 2h1 1 2n 1 l, n � 0, 1, 2, . . . . (7)

We will write non-normalizable solutions as

fvl �m � e2ivtYl �mxvl�r� . (8)

These have asymptotic behavior

xvl
r!p�2
! �cosr�2h2 , (9)

where a convenient normalization convention has been
chosen by fixing the overall constant.
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We will also require some assumptions about the spec-
trum. This is classified according to the representations
of SO�d, 2�. A given representation is determined by its
weight D (which corresponds to the conformal weight in
the CFT) and contains states jD; n, l, �m�. Here n is the
principal quantum number and l, �m are the standard angu-
lar quantum numbers, as above. The energy, defined with
respect to global time, is given by

v
D
n� � D 1 2n 1 l . (10)

For a free field,

D � 2h1 . (11)

We assume that the states of the interacting scalar
theory consist of the vacuum j0�, the single particle states
jD; n, l, �m�, and multiparticle states jDb ; n, l, �m�b , where
b is an additional state label. For the interacting field, D

may be renormalized and is not necessarily given in terms
of the bare mass by (11). We also assume that

Db . D (12)

for all multiparticle states.
Some useful properties of the bulk-boundary propagator

are also needed. Suppose that we seek a solution of the
free equation (3) satisfying the boundary condition

f
r!p�2
! �cosr�2h2f�b� , (13)

where b � �t, V� denotes the boundary coordinates and
f is some specified boundary value. Witten [3] defines
the bulk-boundary Green function to be the kernel that
2708
provides the solution:

f�x� �
Z

db f�b�GB≠�b, x� . (14)

(Although Witten’s definition was made in the euclidean
continuation of AdS, the formalism naturally extends to
Lorentzian signature, as discussed in Refs. [4,11].) Ex-
plicit expressions for GB≠ can then be found [3] using
the resulting condition that GB≠ must asymptote to a delta
function at the boundary.

It is easy to derive an alternate formula for GB≠ in terms
of the bulk Feynman propagator GB�x, x0� using an AdS
variant of the usual Green’s theorem argument. Consider
the solution f with the above boundary conditions (13).
Define a region V by r , r̄ � p�2. Using

��x 2 m2�GB�x, x0� � 2d�x, x0� , (15)

we may rewrite f as

f�x0� � 2
Z

V
dV f�x� ��x 2 m2�GB�x, x0� (16)

and then integrate twice by parts to find

f�x0� � 2
Z

≠V
dSm f�x�≠$mGB�x, x0� . (17)

At the boundary the Feynman propagator scales as

GB�x, x0�
r!p�2
! �cosr�2h1G�b, x0� (18)

for some function G. Substituting this and the boundary
behavior (13) into (17) gives
f�x0� � 2Rd21
Z

db f�b�G�b, x0� lim
r!p�2

�tanr�d21��cosr�2h2≠
$

r�cosr�2h1� , (19)
with limit

f�x0� � 2nRd21
Z

db f�b�G�b, x0� . (20)

Comparison with (14) then shows
GB≠�b, x0� � 2nRd21 lim

r!p�2
�cosr�22h1GB�x, x0� , (21)

in agreement with [12].
Notice that (3) and (13) do not uniquely specify the so-

lution f; one may always add a normalizable mode with-
out modifying the boundary behavior (13). Specifically,
suppose that f�b� falls to zero in the far past and fu-
ture. Then, in the asymptotic past and future, f must be a
linear combination of the normalizable modes (5). With
the preceding construction of GB≠, Eq. (14) gives the solu-
tion that is purely positive frequency in the far future and
purely negative frequency in the far past. Other solutions
can be obtained by modifying the temporal boundary con-
ditions on the bulk Green function, e.g., by using retarded
or advanced propagators.

Note that the non-normalizable solutions fvl �m can
be recovered from (14); in the limit f ! e2ivtYl �m, (9)
coincides with (13). Therefore

fvl �m�x� �
Z

db e2ivtYl �mGB≠�b, x�

� GB≠�2v, l, 2 �m; x� . (22)
For a general f , we can therefore rewrite (14) in terms
of the Fourier transform fl �m�v� as

ff�x� �
Z

db f�b�GB≠�b, x�

�
X
l, �m

Z dv

2p
fl �m�v�fvl �m�x� . (23)

For appropriately chosen f, this function defines a solu-
tion corresponding to a wave packet. The function f de-
termines the packet profile.

These can be thought of as packets incident from infinity
in AdS. Notice that, according to (9), they typically
diverge at the boundary. There is a physical reason for
this: Motion in the region near the boundary is classically
forbidden. Therefore the amplitude for a particle incident
from infinity to reach the center of AdS is suppressed
by an infinite tunneling factor. However, the amplitude
for a particle to reach the center of AdS may be kept
finite by rescaling the wave function such that the incident
amplitude at infinity is infinite.

One concrete way to think of this is to imagine cutting
off AdS at a large but finite radius and patching the
resulting AdS bubble into a spacetime with a bona fide null
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infinity, as in [4]. A beam of particles from this asymptotic
space can be focused to collide with another beam in the
center of the AdS region. Most of the incident flux is
reflected off the potential barrier resulting from the AdS
geometry, so in order for the beams to penetrate to the
center the incident amplitudes must be large. The wave-
packet definitions above, which are given intrinsically in
AdS without reference to an auxiliary bubble picture, can
be thought of as arising from the limit where the radius
of the AdS bubble goes to infinity while simultaneously
scaling up the incident beam amplitudes.

These wave packets can now be used to construct opera-
tors that create in and out states. (References [5,6] outline
the construction of such operators in the infinite-N limit.
Here we will explicitly construct such operators for arbi-
trary N .) These asymptotic operators will be defined by

af � lim
r̄!p�2

Z
S

dSm f�
f≠
$

mF , (24)

where S � ≠V for the region V defined above and F is
the full interacting field. We also define the plane wave
limit of these operators,

avl �m � lim
r̄!p�2

Z
S

dSm f
�
vl �m≠

$
mF . (25)

If F is replaced by the free field,

f �
X

n,l, �m

anl �me2ivnl tfnl �m 1 a
y

nl �meivnl tf
�
nl �m , (26)

then (25) gives

avl �m � 24pnRd21
X
n

knl�d�v 2 vnl�anl �m

1 d�v 1 vnl�a
y

nl,2 �m� , (27)

where the knl appeared in (6). This suggests that the
positive and negative frequency avl �m’s can be thought of
as annihilation and creation operators, respectively.

This is confirmed by the following critical relations,
which hold for the operators constructed from the full
interacting field:

	0jaf jD; n, l, �m� � 22nRd21N�D�knlf
�
l �m�vnl� , (28)

	D; n, l, �mjaf j0� � 22nRd21N�D�knlf
�
l,2 �m�2vnl� ,

(29)

and

	0jaf jDb ; n0, l0, �m0�b � 0 , (30)

where N�D� is another constant. Therefore af with
positive-frequency f annihilates a particle at the bound-
ary, and with negative-frequency f creates a particle at
the boundary. Furthermore, Eq. (30) implies that the af’s
only annihilate/create single particle states.

The first of these relations is proved by recalling that,
by symmetry, the full interacting field must satisfy [13]

	0jF�x�j; n, l, �m� � N�D�fnl �m�x� (31)
for some normalization factor N�D�. Then the definition
(25) and a derivation such as that in (19) and (20) imme-
diately gives (28). Note that in order for this to be true
the modes in (23) and (25) must be defined with the mass
fixed by 2h1 � D, corresponding to using the renormal-
ized physical mass of the single particle state. Analogous
reasoning proves Eq. (29).

Equation (30) is shown by noting that, again purely from
the SO�d, 2� symmetry,

	0jF�x�jDb; n, l, �m�b � Nb�Db�f
Db

nl �m�x� , (32)

where f
Db

nl �m is defined using the mass parameter corre-
sponding to the multiparticle Db . Again, the matrix ele-
ment (30) can be found from reasoning parallel to (19) and
(20), but now the result contains

lim
r!p�2

�cosr�Db2D. (33)

This vanishes by Eq. (12).
In and out states are now readily defined. For positive-

frequency functions fi , define

ain
fi

� afi �Zi , (34)

and for negative-frequency functions f 0
j , define

a
outy
f 0

j
� af 0

j
�Z0

j , (35)

where the Zi are wave-function renormalization factors
necessary to cancel normalization constants such as those
in (28) and (29). The in and out states are then

jfi�in �
Y

i

a
iny
fi

j0� (36)

and

out	f 0
jj � 	0j

Y
j

a
out
f 0

j
. (37)

These states in turn lead to construction of the boundary S
matrix. Suppose that the wave packets fi , f

0
j are nonover-

lapping, and that the support of all of the f 0
j’s lies to the

future of that of all of the fi’s. The boundary S matrix is
then defined as

S≠�f1 · · · fm; f 0
1 · · · f 0

n� �
ø
0jT

Y
j

a
out
f 0

j

Y
i

a
iny
fi

j0

¿
.

(38)

Although the interpretation is less transparent, the same
definition can be adopted for fi and f 0

j not satisfying the
above conditions.

In flat space, the S matrix is related by the LSZ formula
to truncated correlation functions. A similar formula can
now be derived for the boundary S matrix, which will be
given in terms of bulk correlation functions. Consider a fi-
nite region V 0 defined such as V above, but with boundaries
S2T , ST of constant time 6T lying to the far past and far
future of the wave packets’ support. The Gauss theorem
2709
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applied to (24) gives

a
iny
f �

1
Z

lim
r!p�2

"Z
V 0

dV =m�ff≠
$

mF� 2
Z

S2T 1ST

dSm ff≠
$

mF

#
, (39)
where the T ! ` limit is also understood. The surface
term at S2T vanishes because ff is positive frequency
and therefore vanishes in the far past. Inside (38), the time
ordering takes the surface term at ST to the left. We can
then insert a complete set of states js� to find an expression
of the form X

s

Z
ST

dSmff≠
$

m	0jFjs� 	sjc� . (40)
2710
This vanishes by Eq. (31). The bulk term is left and, after
using the free equation for ff and taking T ! `, becomes

a
iny
f �

1
Z

Z
dV ff�� 2 m2�F , (41)

where ��� denotes equality inside (38). Similar argu-
ments hold for a

out
f . The LSZ formula immediately

follows:
S≠� f1 · · · fm; f 0
1 · · · f 0

n� �
Z Y

i

∑
dVi

Zi
ffi�xi�

∏ Y
j

∑
dV 0

j

Z0
j

ff 0
j
�x0

j�
∏

	0jT
Y

i

F�xi�
Y

j

F�x0
j� j0�T . (42)

Here the kinetic operator in (41) has removed the external legs, and the “T” subscript denotes the resulting truncated
Green function.

The relation to correlation functions in the conformal field theory now follows trivially. Witten [3] has shown that
the CFT correlators are given in terms of the truncated bulk correlators and the bulk-boundary propagator asø

T
Y
a

O �ba�
¿

�
Z Y

a
�dVaGB≠�ba, xa�� 	0jT

Y
a

F�xa� j0�T . (43)

After substituting (23) into (42), S≠ is therefore given by

S≠�f1 · · · fm; f 0
1 · · · f 0

n� �
Z Y

i

∑
dbi

fi�bi�
Zi

∏ Z Y
j

∑
db0

j

f 0
j�b0

j�
Z0

j

∏ ø
T

Y
i

O �bi�
Y

j

O �b0
j�

¿
, (44)

or in the plane wave limit f ! e2ivtYl �m,

S≠�
vi , li , �mi�; 
v0
j , l

0
j , �m0

j�� �

ø
T

Y
i

1
Zi

O �vi , li , �mi�
Y

j

1
Z0

j
O �v0

j , l
0
j , �m0

j�
¿

. (45)
These strikingly simple relations tell us that the CFT
correlators directly determine the boundary S matrix, and
thus provide an extremely simply dictionary between
scattering amplitudes in anti–de Sitter space and the
conformal field theory correlation functions.
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