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The nonlinear self-consistent propagation of neutrinos in a dense plasma is described usi
relativistic kinetic equations for neutrinos and electrons. The general nonlinear dispersion re
for a neutrino fluid coupled with a plasma is derived. For scenarios close to realistic astroph
conditions, neutrino driven streaming instabilities can develop, with growth rates which scale wit
Fermi constantGF , thus leading to significant energy transfer from the neutrinos to the plasma.
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The electromagnetic properties of neutrinos and th
propagation of neutrinos in a medium are subjects of pa
mount importance, touching several fundamental problem
in physics [1–3]. Until very recently, neutrino propaga
tion in matter has been considered as a non-self-consis
single particle process. All the single particle mecha
nisms involving the electromagnetic properties of neutr
nos in matter have a direct analogy with the process
involving a single electron in a medium (e.g., Cerenko
radiation, transition radiation, bremsstrahlung), and this a
sociation can be pushed even further through the concep
the induced charge of neutrinos in a medium [4,5]. How
ever, it is well known that the self-consistent descriptio
of a stream of charged particles moving through a mediu
(for instance, a plasma) leads to the appearance of a n
class of collective phenomena (e.g., instabilities, Land
damping) [6], which cannot be accounted for by the sing
particle description. Previous studies based on a Kle
Gordon description of the neutrino field have pointed o
that neutrino driven instabilities can also develop in diffe
ent astrophysical conditions [7]. In this Letter, we conside
the self-consistent propagation of a neutrino distributio
in a plasma: the neutrinos (which we assume are electr
neutrinosne) interact with the electrons through the wea
interaction force. The electrons in the plasma interact wi
the neutrinos also via the weak interaction force, and b
tween themselves and with the ions through the elect
magnetic force. The stream of neutrinos is intense enou
to disturb the background medium, generating an electr
density modulation. The density modulation will then af
fect the neutrinos, bunching them in the regions of low
electron density. This, in turn, leads to an increase of t
force that the neutrinos exert in the plasma, and thus
a stronger density modulation, closing the feedback loo
This picture is equivalent to the two stream instability o
an electron beam in a plasma or to the photon driven fo
ward Raman instabilities found in laser-plasma intera
tions. In spite of the different type of interactions involved
all these collective processes can be classified as stream
instabilities [6].
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A systematic description of the many body intera
tion between neutrinos and background plasma m
be based on a kinetic theory for the neutrinos and
plasma. This kinetic theory can be either derived fro
a particle physics point of view [8] or from more in
tuitive and easily generalizable statistical and plas
physics considerations. The single neutrino dynam
in matter is determined by a Hamiltonian including th
effective potentialVeff describing neutrino interaction
with matter [9]. For an isotropic plasma, where the io
(i) provide a neutralizing background, and assuming
neutrinos (n) interact only with the electrons (e) in the
plasma through the weak interaction force, the effect
Hamiltonian is [5,9] H �Pn , r� � H0 1 Veff�r, t� �q

�Pnc 2 �
p
2GF�c�Je�2 1 m2

nc4 1
p
2GFne�r, t�, where

GF is the Fermi constant of weak interaction,Pn is the
neutrino canonical momentum,ne�r, t� is the local elec-
tron number density,Je is the electron fluid current,mn

is the neutrino rest mass,c is the speed of light, and th
Weinberg mixing angleuW satisfies sinuW � 1�2. Also,
we are in the reference frame where the electron fluid
stationary; i.e., the mean electron fluid current is ze
For massless neutrinos,mn can be set to zero withou
loss of generality. In the quasiclassical limit, i.e., as lo
as the neutrino de Broglie wavelengthln � 2p h̄�jpn j
varies only slightly over the typical length scale
changes inVeff, ln ø 1�j= logVeffj, the single neutrino
dynamics can be described by the classical equat
of motion derived fromH , and �Pn � 2≠H �≠rn �
2=Veff 1 �

p
2GF�H0�=pn ? Je, and �rn � vn �

≠H �≠Pn � pnc2�
p

p2
nc2 1 m2

nc4, where pn � Pn 2

�
p
2GF�c2�Je is the neutrino momentum. The sing

electrons in the plasma are subject to the electric fieldE
(due to deviations from the plasma quasineutrality) a
to the ponderomotive force due to anisotropies in
neutrino distributionFpond � 2

p
2GF=�nn�r, t� 2

ve?Jn

c2 �
[10], wherenn�r, t� is the neutrino number density, andJn

is the neutrino fluid current. The collisionless relativis
equations for the neutrinos and electrons can then
written as [5]
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c2 3 = 3 Je

∂
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� 0 , (1)

≠fe

≠t
1 ve ?

≠fe

≠r
2

∑
eE 1

p
2GF

µ
=nn 1

1
c2

≠Jn

≠t
2

ve

c2 3 = 3 Jn

∂∏
?

≠fe

≠pe
� 0 , (2)
where fe � fn� is the quasiclassical distribution function
for the electrons (neutrinos), satisfying the normalization
condition ne � 2

R
dpe fe (the factor 2 accounting for spin

degeneracy), and nn �
R

dpn fn , with nn the neutrino
number density. Je�n� is written as a function of fe�n�
as Je�n� � ge�n�

R
dpe�n� ve�n�fe�n�, with ge�n� � 2�1�.

Equations (1) and (2) are equivalent to the covariant
relativistic kinetic equations derived by Semikoz using a
less intuitive formalism [8]. Our approach here is clearly
semiclassical: the interaction of the neutrinos with the
electrons is governed by quantum processes (included
in Veff), and the Fermi statistics of the phase space
density of the particle numbers are taken into account,
but the neutrino dynamics is determined by the classical
Hamiltonian H , and we neglect the spins. By neglecting
the collisions nn, ne, and ei, we are assuming that the
typical time scale 2p�vL of the collective processes
satisfies vL ¿ nei ¿ nne ¿ nnn , where nxy is the
collision frequency between species x and y. Inclusion
of collisions will be discussed below. Since we are
looking only at neutrino driven electrostatic plasma os-
cillations, the kinetic equations (1) and (2) must be
supplemented by Poisson’s equation = ? E �
24pe�ne 2 ne0�, where ne0 is the mean electron
density, and e the magnitude of the electron charge.
This set of equations provides a self-consistent picture
of the neutrino-plasma interaction. The weak interaction
between neutrinos could be easily included in our kinetic
equations (through an additional potential term acting on
the neutrinos), and this would lead to a slight enhancement
of the instability discussed below. Inclusion of additional
species, such as positrons, neutrons, or other neutrino
flavors, is also straightforward, making this formulation
a rather general description for collective neutrino-matter
interactions.

Performing the usual perturbative analysis over our set
of equations (assuming an isotropic plasma and neglecting
ion motion) [6], we obtain the nonlinear dispersion
relation for the electron plasma waves (EPWs) driven by
the intense neutrino flux

1 1 xe�vL,kL� 1 xn�vL,kL� � 0 , (3)

where xe�vL,kL� is the relativistic longitudinal electron
susceptibility, given by

xe�vL,kL� �
v

2
pe0

k2
L

me

Z
dpe

kL ? �≠f̂e0�≠pe�
vL 2 kL ? ve

, (4)

and xn�vL,kL� is the relativistic longitudinal neutrino
susceptibility
xn�vL,kL� � 22G2
F

k2
Lne0nn0

mev
2
pe0

µ
1 2

v
2
L

k2
Lc2

∂2
xe�vL,kL�

3
Z

dpn

kL ? �≠f̂n0�≠pn�
vL 2 kL ? vn

, (5)

where vL is the EPW frequency, kL is the EPW wave
vector, f̂e0 ( f̂n0) is the normalized electron (neutrino) dis-
tribution function, vpe0 � �4pne0e2�me�1�2 is the elec-
tron plasma frequency, and me the electron mass.

We now analyze (3) for different physical conditions.
We first consider a monochromatic neutrino beam, propa-
gating in a cold plasma (Te � 0). By assuming a cold
plasma, dispersion is neglected. Detailed numerical results
including the relativistic electron dispersion relation will
be presented in a future publication [11]. The most
important contribution of an electron thermal distribution
is electron Landau damping, and this will be discussed
below. The normalized neutrino distribution function is
f̂n0 � d�pn 2 pn0�, and Eq. (5) can be easily evaluated.
The nonlinear dispersion relation then obeys

v2
L � v2

pe0 1
Dnk4

Lc4

�vL 2 kLcosuppn0c2�En0�2

µ
12

v
2
L

k2
Lc2

∂2
Q

(6)

with Dn � 2G2
Fnn0ne0��mec2En0�, and Q �

�m2
nc4 cos2up

E2
n0

1 sin2up�, where up is the angle between
kL and pn0, and En0 is the energy of the neutrinos
in the beam. We now proceed by making the same
analysis as for the two stream instability [6], putting
vL � vpe0 1 d, assuming that the fastest growing mode
verifies kL cosuppn0c2�En0 � vpe0, and solving for d.
In the weak beam approximation d�vpe0 ø 1, the growth
rate is

gweak �

p
3
2

vpe0

µ
Q̃

cos4up
Dn

∂1�3
~ G

2�3
F , (7)

where Q̃ � Q�sin2up
p2

n0c
2

E2
n0

1
m2

nc4

E2
n0

�2. We observe that di-
rect forward scattering is strongly suppressed due to the
small neutrino mass, since mnc2�En0 ø 1 thus leading to
Q̃ � sin6up . Also, the maximum growth rate increases
with up . A simplistic analysis would lead us to conclude
that maximum growth would occur for up � p�2. How-
ever, and since the wave number of the fastest growing
mode decreases with increasing up , Landau damping plays
a significant role when vL�kL � yth only allowing the
instability to grow for angles up # uL � arccos�yth�c�,
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where yth �
p

kBTe�me is the electron thermal velocity.
Therefore, neutrinos propagate across high temperature re-
gions without significant energy transfer to the plasma
waves, and only when they reach sufficiently low elec-
tron temperature regions (in the outer layers of the star)
the instability starts to go. Furthermore, and most im-
portant, the growth rate in Eq. (7) scales with G

2�3
F , thus

much stronger than the single scattering processes, for in-
stance, n 2 e scattering, which are proportional to G2

F .
The previous model for neutrino emission is still a crude
one. In general, we expect neutrino emission with some
momentum spread spn . Assuming a neutrino distribution
function obeying f̂n0 � f̂n0x�pnx�d�pny�d�pnz�, where
f̂n0x�pnx� describes the energy distribution of the neu-
trinos, the neutrino susceptibility (5) can still be evalu-
ated as before as long as neutrino Landau damping [12]
can be neglected; neutrino kinetic effects can be dis-
carded whenever the phase velocity of the unstable plasma
modes does not overlap the neutrino velocity distribu-
tion function; i.e., jvL�kL 2 yn0j ¿ syn , where yn0 �
pn0c2�En0 is the neutrino distribution central velocity, and
syn � spnm2

nc6�E3
n0 is the neutrino velocity spread. In

the hydrodynamic regime of the neutrino-plasma instabil-
ity, and considering that mnc2 ø En , the neutrino suscep-
tibility satisfies xn�vL,kL� � xm-beam

n �ln	En0��2p h̄c�,
where �ln	 is the average of the neutrino de Broglie wave-
length over the neutrino distribution function, and xm-beam

n

is the neutrino susceptibility for the monoenergetic neu-
trino beam with energy En0. In the hydrodynamic regime,
the growth rates are identical, and independent of the neu-
trino distribution function details, being a function only
of the neutrino density nn0 and the averaged de Broglie
wavelength �ln	. During a supernova explosion, neutri-
nos are emitted from the surface of the neutrinosphere, and
for distances R much longer than the radius of the neu-
trinosphere rsphere, a neutrino beam with angular spread
umax 
 rsphere�R is present, with a normalized distribution
function f̂n0 � d�pn 2 pn0���2pp2

n0�1 2 cosumax�� for
u # umax, where u denotes the polar angle in spherical
coordinates, and pn0 is the neutrinos’ momentum. The
angular spread will contribute to a decrease of the instabil-
ity growth rate. Even for this simple neutrino distribution
model, the neutrino susceptibility can only be determined
analytically for EPWs propagating radially. We point out
that this is the worst case scenario since the growth rate
is then proportional to mnc2�En0. In this scenario, to be
compared with slab geometry for up � 0, the instability
growth rate for the fastest growing mode vL � kLyn0,
with yn0 � pn0c2�En0, is

gsph � vpe0

µ
Dn

1 2 cosumax

m6
nc12

E6
n0

∂1�2
~ GF . (8)

Therefore, gsph�gweak�up � 0� � �Dnm6
nc12�E6

n0�1�6��12

cosumax�1�2, thus indicating that for up fi 0,
gsph�gweak should scale approximately with
�DnQ̃�1�6��1 2 cosumax�1�2. For small angles, up #

umax, the instability regime is still hydrodynamic.
Collisions can also be included in our kinetic

model. Collisions involving neutrinos are not taken
into account, since the collisional cross section is
snx 
 �GFkB�2p h̄c�2TnTx , with Tn denoting the neu-
trino temperature and Tx the temperature of the species x
(electrons, neutrons), and the collision frequency is much
smaller than vpe0. However, electron-ion collisions
should be considered since the electron-ion collision
frequency nei can be comparable to vpe0. We assume
the Bhatnagar-Gross-Krook e-i collision model [13].
Hence, for a cold plasma the electron susceptibility
satisfies xe�vL,kL� � 2v

2
pe0��v2

L 2 ineivL�, and the
new dispersion relation is obtained from Eq. (6) by
replacing v

2
L by vL�vL 1 inei�. Performing the same

instability analysis as before, and assuming d�nei ø 1,
we obtain the growth rate gcoll for the fastest growing
mode (kL cosuppn0c2�En0 � vpe0):

gcoll �

p
2
2

vpe0

µ
Dn

Q̃

cos4up

vpe0

nei

∂1�2
~ GF . (9)

Even though nei ¿ gcoll, the inclusion of collisions does
not shut down the instability, it only slows down growth,
gcoll , gweak. As for photon driven instabilities [14], the
threshold of the instability is proportional to the product of
the electron damping (~ nei) with the neutrino damping
(~ nnx ~ G2

F), giving a negligible threshold for typical
parameters.

We now evaluate the growth rate of the neutrino
driven streaming instabilities for supernova IIa condi-
tions. The relevant parameter for comparison is the mean
free path for neutrino-electron single scattering, which
is roughly lne 
 1015 cm, with a neutrino luminosity
of Ln � 1052 erg�s, ne0 � 1029 cm23, Tn � 10 MeV,
and Te in the hundreds of keV range, at R � 300 km
from the core of the star, and a neutrinosphere radius
rsphere � 3 km. We also assume the electron-neutrino
mass is mn � 0.1 eV. With a finite neutrino mass, di-
rect forward scattering is present, but it is too small to
be of any effect for electron neutrinos. For scattering
angles up fi 0, the growth rate is much stronger. In
Fig. 1(a), we present the maximum growth rate for slab
geometry neglecting collisions, in the weak beam approxi-
mation, Eq. (7), plotted as a function of up . The ver-
tical lines denote the angle for which Landau damping
becomes significant (for a well determined electron tem-
perature), and a mechanism equivalent to forward stimu-
lated Compton scattering starts to play a dominant role
[15]. We observe growth rates of the order of 109 s21,
corresponding to growth distances of 1 m. In the more re-
alistic scenario where electron-ion collisions are included
[Fig. 1(b)], the growth distance for 20 e-foldings is 6 km.
2705
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FIG. 1. Growth rate of the neutrino driven streaming insta-
bility (a) without e-i collisions, Eq. (7), (b) including e-i col-
lisions, Eq. (9), for typical supernovae parameters: �En	 �
10 MeV , ne0 � 1029 cm23, and Ln � 1052 erg�s at 300 km
from the core. The vertical lines indicate the maximum angle
the instability can grow without significant influence from elec-
tron Landau damping, for a given temperature Te.

It is then clear that neutrino driven streaming instabili-
ties can play an important role in astrophysical conditions
where intense fluxes of neutrinos are present. In super-
novae, the role of the neutrino driven instabilities can con-
tribute to the evolution of the explosion [7]. Through this
collective process, energy is transferred from the neutri-
nos to plasma waves and subsequently to the electrons via
collisional and Landau damping. Once the plasma heats
up sufficiently (Te 
 500 keV), all the plasma modes be-
come heavily Landau damped (and hence become quasi-
modes), and the instability turns off limiting the energy
deposited in the stellar envelope. This plasma heating
leads to a pressure increase behind the stalled shock, and
to a strong ejection of the outer layers of the star. In the
early universe, a neutrino driven filamentation instability
(up 
 p�2, with ion motion) can also lead to the for-
mation of nonlinear structures (filaments), contributing to
the formation of the large-scale structure of the Universe
[16]. This instability will be extremely important when-
ever there is structure in the beam, such as neutrino hot
spots in neutron stars [17].

In this Letter, we have presented a self-consistent
picture for neutrino-plasma interactions, based on a
relativistic kinetic theory for electron neutrinos and
electrons. This formalism can be easily extended to
include other neutrino flavors and background species,
and provides the foundations for the numerical simula-
tion of collective neutrino-plasma processes. We have
shown that for conditions where intense neutrino fluxes
are present, neutrino driven streaming instabilities can
develop, with growth distances scaling with G21

F , as
compared with the single neutrino-electron scattering
mean free path which is proportional to G22

F . Even direct
forward scattering, corresponding to the least favorable
situation, gives an effect that must be considered when
copious amounts of neutrinos are present. Our results
indicate that collective neutrino-plasma instabilities
can play a significant role for extreme astrophysical
conditions like those present in supernovae explosions,
gamma-ray bursts, or the early universe.
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