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The low energy quantal spectrum is considered as a function of the total angular momentum
system of weakly interacting bosonic atoms held together by an external isotropic harmonic poten
is found that besides the usual condensation into the lowest state of the oscillator the system exhi
additional kinds of condensate and associated thermodynamic phase transitions. These new phe
are derived from the degrees of freedom of “partition space” which describe the multitude of diff
ways in which the angular momentum can be distributed among the atoms while remaining all th
in the lowest state of the oscillator.
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The properties of the nonzero angular momentum sta
of Bose condensates of atoms in external traps have b
addressed in several recent publications [1]. Special
terest attaches to the lowest energy quantum states wi
given angular momentum. Borrowing from nuclear phy
ics terminology we shall refer to this part of the quantu
spectrum as the yrast region [2]. Theoretical work on t
yrast region for Bose condensates has, with the except
of [3], been based on the Gross-Pitaevski mean field a
proximation [4]. In the present Letter the yrast spectra a
described in terms of the elementary modes that carry
angular momentum. It is found that this approach reve
structures in the yrast spectra that were not recognized
previous work. The picture of the yrast region describe
in this Letter draws heavily on ideas developed in collab
ration with Bohr [5] in connection with the analysis of the
stability of persistent currents in superconductors.

The model considered, which has previously been d
cussed by Wilkinet al. [3], involves N spin zero bosons
moving in an isotropic harmonic confining potential an
a contact interaction with a strength that is assumed to
weak, in the sense

yN ø h̄v0 , (1)

wherey is the expectation value of the interaction betwee
two particles both in the ground state of the oscillato
andh̄v0 is the quantum energy of the confining potentia
Although the so-far published experiments have main
studied systems that do not satisfy the condition (1), sy
tems that do satisfy this condition are accessible w
current experimental techniques and would be especia
interesting since this implies that the coherence length
the atomic cloud becomes larger than the size of the s
tem, bringing into sharpest focus the mesoscopic nature
these systems. The eigenstates of a single particle mov
in an harmonic oscillator can be labeled by the quantu
numbers�nlm� wheren is the radial quantum number,l
is the angular momentum, andm is the component ofl
on the axis of quantization. The energy of such a state
e � �2n 1 l 1 3�2�h̄v0, and for the yrast states we nee
only consider occupancy of states withn � 0, m � l $ 0.
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(Without loss of generality we assume that the total angu
momentum is in a state of maximum alignmentL � M.)
Thus the relevant single particle states involve only
single non-negative quantum number,m.

In the yrast state with total angular momentum̄hL,
the motion in the oscillator will contribute an excitatio
energyLh̄v0 with respect to the ground state. Howeve
this configuration is degenerate in the absence of
interactions, since the oscillator energy is the same whet
the L quanta are distributed among the particles with o
quantum to each ofL different particles, or with two
quanta on one particle and one quantum on each ofL 2 2
other particles, etc. Since the multiplicityp�L� of the
partitions of the integerL into positive integers increase
asymptotically as [6]

p�L� �
1

p
48 L

exp

Ω
p

r
2L
3

æ
, (2)

the magnitude of the degeneracies becomes quite la
even for moderate values ofL. This set of states will
be called the partition space ofL, and the problem of
characterizing the yrast spectra thus amounts to finding
lowest quantum states selected by the contact interac
acting within the partition space ofL.

Partition space.—Since the construction of appropriat
basis states in partition space and their matrix eleme
plays the crucial role in the subsequent discussion, it
useful to begin with a brief discussion of some of the mo
elementary features of this interesting space. The stand
notation for a partition of the integerL is

�1n12n2 . . . LnL� , (3)

where thenr are restricted by the condition

LX
r�1

rnr � L . (4)

The set of integers�nr� satisfying (4) can thus be though
of as a set of quantum numbers characterizing a basis s
in the partition space ofL.
© 1999 The American Physical Society 2695
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In the present discussion we shall exploit two different
ways of associating a basis state with a given partition
�nr �. The two realizations differ in their identification of
the object that carries the r units of angular momentum:
(i) r � m, the address of a single particle state. In this
realization the nm count the number of different particles,
each of which is carrying m units of angular momentum:

C�nm� � j�m � 1�n1�m � 2�n2 . . . �m � L�nL� . (5)

(ii) r � l, the multipole order of a (collective) normal
mode of excitation. Assuming that the normal mode is
excited by acting on the ground state with the collective
operator Ql, we have

C�nl� � PL
l�1�Ql�nl j0� . (6)

Although these two realizations each provide a com-
plete set of states for describing partition space, these
states can be very different when the numbers nr of exci-
tations is large; thus for a single mode we have the overlap

��m � l�nl j
1

p
nl!

�Ql�nl j0� �

s
N!

�N 2 nl�! Nnl

� exp

Ω
2

1
2N

�nl�2

æ
, (7)

where we have employed the expression (8) for Ql. Thus
for states involving condensates in which nl � O �L�
where L ¿

p
N , the two different states derived from the

same partition become essentially orthogonal.
In thinking about the structure of the operators Ql it is

fruitful to take inspiration from Feynman’s arguments [7]
that identify the long wavelength, low energy excitations
of superfluid helium with modes that are excited by acting
on the ground state with a sum of single particle operators
that impart the conserved quantum numbers (momentum
in the case of liquid helium, angular momentum in the
present problem) to a single particle of the condensate.
Thus we shall assume

Ql �
1

p
2Nl!

NX
p�1

zl
p , (8)

zp � xp 1 iyp , (9)

where the spatial coordinates are measured in units of
the oscillator length. The operator (8) acting on the
L � 0 many body ground state of the oscillator creates
a symmetrized state with angular momentum L � l; the
operator (8) raised to the nl power creates the many body
excitations that appear in (6).

The excitation energies of the normal modes (8) can
be evaluated by taking expectation values of the contact
interaction in the appropriate harmonic oscillator states:

el � �0jQ1
l VQlj0� 2 �0jV j0�

� 2yN

∑
1 2

µ
1
2

∂l21∏
, (10)
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where the first term in the brackets represents the loss
of interaction energy due to the removal of a single par-
ticle from the condensate in the ground state �m � 0�
of the oscillator, and the second term describes the re-
maining interaction between the condensate particles and
the excited single particle moving in an orbit with angular
momentum l. The short range of the interaction is respon-
sible for the rapid decrease of the latter term as the particle
with increasing l moves in orbits with larger and larger
radius. It should be emphasized that the energies (10) will
be somewhat modified in a many mode excited state as
a result of mode-mode interactions, but these interactions
contribute terms that are at most of order y and therefore
small compared with the leading order term (10). Thus, at
least for L ø N , we can consider the Ql excitations as a
gas of noninteracting particles.

Attractive interactions �y , 0�.—On the basis of the
above, we are now in a position to construct the yrast states
and the low energy excitations as a function of the angular
momentum L. The phase diagram is somewhat simpler for
attractive interaction than for repulsive and so we begin
with attraction. The mode energies (10) are seen to be
positive for all modes with the exception of l � 1 which
has e1 � 0; the vanishing of the mode energy for l � 1
can be simply understood from the fact that the operator
Q1 is proportional to the center of mass coordinate and
thus does not affect the interactions of the particles which
depend only on relative coordinates. Thus, in agreement
with [3], we find that the yrast state is described by a wave
function

CL � �Q1�LF0 , (11)

in which the excitation energy and angular momentum are
entirely associated with the center of mass of the atom
cloud moving around in the confining oscillator potential
while the relative coordinates and interactions remain
exactly as in the L � 0 state.

The state (11) can be seen to involve two distinct con-
densates: partly the usual Bose-Einstein condensate that
puts all the particles into the lowest state of the oscilla-
tor. This condensate is, in the presence of a finite tempera-
ture, melted by excitations that move particles to excited
states in the oscillator, and this results in a critical transi-
tion at the Bose-Einstein condensation temperature [1]

Tc � N1�3h̄v0 . (12)

In addition, the state (11) involves a condensate into a
single mode �l � 1� out of the many degrees of freedom in
partition space. The low energy degrees of freedom of the
partition space are described by excitations involving the
removal of particles from the l � 1 mode and correspond-
ing excitation of the modes with l � 2, 3, 4, . . . , L. Such
excitations imply a melting of the partition space conden-
sate and, because of the (near) degeneracy of all the l fi 1
normal modes, the thermal average of their contributions
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to the partition function can be easily evaluated and yield
a critical temperature

Tpc �
Ny

lnL
(13)

for the partition space phase transition. At this temperature
the specific heat has a singularity (decreasing by a factor
of 2) and the occupation of the �l � 1� mode decreases
from the value 2L�1 1

p
5 �21 to a value that is of orderp

L. This transition is, of course, in a finite system and
therefore the critical region is spread over a finite interval
in temperature. However, this interval is

dT �
Ny

�lnL�2 (14)

and thus is small compared to the critical temperature.
Repulsive interactions �y . 0�.—The spectra resulting

from repulsive interactions are obtained by inverting those
discussed above, and the structure of the yrast region
involves an analysis of the configurations that would have
been those of highest energy in the earlier discussion. It
turns out that there are again two distinct condensates at
each value of L and two phase transitions as a function of
temperature, and in addition there is a third type of phase
structure giving rise to a quantal phase transition (i.e., a
transition at T � 0) in which the nature of the condensate
in partition space changes abruptly as a function of L.
These different T � 0 phases are distinguished by the
different integer number of vortex lines that exist in the
ground state.

We can again, for repulsive interaction (and L ø N),
consider the spectra constructed from the collective ex-
citations produced by the operators Ql, but now the ex-
pression (10) yields negative values. The fact that the
excitations have a negative energy reflects the fact that for
repulsive interactions the interaction energy in the L � 0
state is a maximum and all the Ql�l fi 1� excitations re-
duce the energy by putting nodes in the wave function for
relative motion and letting the particles get a little further
away from each other. The yrast states will therefore be
obtained by a condensation into that mode that has the
greatest energy gain per unit of angular momentum. As
can be seen from Table I, the quadrupole �l � 2� and oc-
tupole �l � 3� modes are optimal in this respect; thus, for
L ø N , the yrast state will be a condensate involving only

TABLE I. Energies of phonon modes for repulsive interac-
tions. The energies (in units of N jyj) are obtained from (10),
and apply to Ql excitations in the yrast region for L ø N .

l el el�l

1 0 0
2 21�2 21�4
3 23�4 21�4
4 27�8 27�32
5 215�16 23�16
these two modes [8]. Excitations of the condensate are
obtained by removing quanta from the condensate mode
and placing them in other Ql modes, always subject to the
constraint (4). In the presence of a finite temperature such
excitations deplete the condensate and lead to a phase tran-
sition at a temperature of order (13).

As we go to higher angular momentum quite general
arguments [1] suggest that for repulsive interactions and
L � N the near yrast states will be dominated by a
structure involving a unit vortex line

F1 � �PN
p�1zp�F0 . (15)

In the state (15) all N atoms have been collectively shifted
outward in the radial direction of the �x, y� plane effec-
tively expanding the area, reducing the density, and thus
reducing the energy associated with the short range repul-
sive interactions. The state (15) represents a realization of
the partition �1N � in the mode corresponding to (5) and as
discussed in connection with Eq. (7) represents a terribly
complicated state if expressed in terms of Ql excitations.
Since there is no efficient way of combining a condensate
in the Q2 mode with a condensation in the m � 1 single
particle state (unit vortex), the yrast state must undergo a
violent rearrangement (many narrowly avoided crossings)
at the critical angular momentum that separates these two
regimes, i.e., a quantum phase transition.

In the region around L � N the low energy degrees of
freedom can be described by the Ql operators acting on
the vortex state, but now the excitation energies el are
different from those given by (10) since the, l excitation
now represents a mode in which a particle is removed
from the condensate in �m � 1� and excited to a state
with m � l 1 1. There is also an additional mode in
these spectra that results from the possibility of removing
a particle from the m � 1 condensate and exciting it to
the m � 0 state. This l � 21 mode can be excited by
the operator

Q21 �
1

p
2N

NX
p�1

1
zp

. (16)

However, the multiple excitations of this mode are not
described by powers of the operator (16) since these
powers contain terms that go outside the partition space.
Rather, the nth excitation of the l � 21 mode is created
by the operator

Q
�n�
21 �

X
p1,p2...,pn

�zp1zp2 . . . zpn �21. (17)

The degree of freedom associated with the l � 21 mode
can be seen as a displacement of the vortex line perpen-
dicular to the axis along which the angular momentum is
aligned as described by the broken symmetry condensate
wave function

C � 	PN
p�1�zp 2 a�
F0 . (18)
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The main obstacle to the observation of the phenomena
discussed in the present paper would seem to be the very
low temperatures necessary in order to come below the
critical temperature (13). However, since this temperature
is only about a factor of 10 below the temperatures that are
routinely obtained in current experiments, the observation
of these interesting effects would not seem to be an im-
possible goal.

The many interesting features of rotating Bose conden-
sates that are briefly sketched in the present Letter are the
subject of a more systematic report that is under prepara-
tion in collaboration with Pethick.

I am indebted to my colleague Christopher Pethick in
more ways than one: partly for his inspiring introduction
to the wonderful world of Bose condensates in external
traps, partly for informing me of his results, obtained in
collaboration with L. P. Pitaevskii, on the structure of the
ground state for L fi 0 and attractive interaction, but most
of all for his posing the seminal question, “What is the
structure of the yrast line for these systems?” I have also
received valuable help from A. D. Jackson in addressing
the combinatorial problems encountered in constructing
quantum states in partition space. I thank Georgios
Kavoulakis for pointing out an error in the original
manuscript for this article and for his collaboration in the
further development.
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