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In the atomic Bose-Einstein condensate, the interactions that bring a binary atom system to a
intermediate state molecule in the Feshbach resonance create a second condensate componen
molecules. The atomic and molecular condensates coherently exchange pairs of atoms. We disc
a signature of the coherent intercondensate exchange: Josephson-like oscillations of the atomic a
molecular populations in response to a sudden change of the energy detuning. The dependence
the many-body ground state energy on volume suggests that the on-resonant ground state is a dil
condensate with the liquidlike property of a self-determined density.
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As dilute gases, the atomic Bose-Einstein condensa
[1–3] are amenable to atomic manipulation techniqu
As superfluids [4], these dilute condensates exhibit
unusual degree of flexibility, promising novel studies
macroscopic quantum coherence. For instance, the no
that external fields can alter the interatomic interactio
[5] suggests the study of condensates with interparticle
teractions that can be experimentally controlled [6]. Si
natures of one of the proposed schemes, the low ene
Feshbach resonance [7], have been observed recently
In this Letter, we point out that this resonance affects t
condensate system more profoundly than altering an eff
tive interparticle interaction: the molecules, formed in th
intermediate state of the binary atom resonance, occup
second condensate component. The atomic and mole
lar condensates interact in part by coherently exchang
pairs of atoms, implying interesting and unusual properti
Below, we discuss two examples: (i) The molecular co
densate, even if it is small in the off-resonant regime, c
reveal its presence by means of Josephson-like oscillati
of the atomic and molecular populations in response t
sudden change of the detuning. (ii) Close to resonance,
coherent intercondensate tunneling binds the dilute ma
body Bose-Einstein condensate (BEC) to a system with
liquidlike property of a self-determined density.

In the low energy Feshbach resonance, the hyperfine
teraction,Vhf , rearranges the spins of two alkali atoms in
teracting in an external magnetic fieldB, bringing them
to an intermediate quasibound molecular state. In t
process, a valence electron spin is “flipped” which, in t
magnetic field, raises the continuum of the intermedia
spin statejS0� by an amountD�B�, relative to the continuum
of the initial binary atom spin statejS�. At a resonant mag-
netic field B � Bm, the jS� continuum lines up with the
bound statem of the jS0� interatomic potential. Near the
resonance, the energy differencee of the initial and inter-
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mediate states, which we call “detuning,” varies with ma
netic field,e � �≠D�≠B� 3 �B 2 Bm�. The amplitude of
the resonant process is characterized bya � �S0jVhf jS� 3R

d3r w�
m�r�w�r�, wherewm denotes the vibrational wave

function of them state andw the continuum (jS�) wave
function. In the relevant low energy limit,a is indepen-
dent of energy and ofB (to the extent thatjS� andjS0� are
B independent).

The resonance width is proportional to the phase sp
volume available to the binary atom final state. As th
volume vanishes in the condensate limit of zero relat
velocity, the width vanishes, and the binary atom effect
scattering length (a without resonance) depends dispe
sively on the detuning:aeff � a 2 �m�4p h̄2�a2�e. On
resonance, lime!0, the effective scattering length diverge
and simply replacing the scattering length byaeff in the
dilute single condensate expressions leads to unphys
divergencies of quantities such as pressure and chem
potential.

Rather than starting from thea priori assumption of
an effective scattering length, we include the long-liv
molecules explicitly in the many-body theory [9]. Th
atom-molecule coupling contributes the following term
the second-quantized Hamiltonian:

Ĥat-mol �
a
p

2

Z
d3r 	ĉy

m�r�ĉa�r�ĉa�r� 1 H.c.
 , (1)

whereĉa and ĉm denote the field operators of the atom
and the quasibound molecules, respectively. In desc
ing binary atom collisions, Eq. (1) reproduces the corre
resonant behavior. In the many-body system, we acco
for the elastic atom-atom, molecule-molecule, and ato
molecule interactions by means of the corresponding
teraction strengths,la, lm, andl [10]. Measuring energy
relative to that of noninteracting atoms, the detuninge
© 1999 The American Physical Society 2691
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makes its appearance as the single molecule energy, and
the many-body Hamiltonian is

Ĥ �
Z

d3r ĉy
a

∑
2

h̄2=2

2m
1

la

2
ĉy

a ĉa 1 lĉy
mĉm

∏
ĉa

1
Z

d3r ĉy
m

∑
2

h̄2=2

4m
1

lm

2
ĉy

mĉm 1 e

∏
ĉm

1
a
p

2

Z
d3r 	ĉy

mĉaĉa 1 ĉmĉy
a ĉy

a 
 , (2)

where the position dependence of the field operators is un-
derstood. Bose-Einstein condensation is generally charac-
terized by a nonvanishing order parameter, �ĉ� � f fi 0,
which we refer to as condensate field. In a mean-field ap-
proach, we obtain the equation of motion of the atomic
�fa � �ĉa�� and molecular �fm � �ĉm�� fields by taking

the expectation value of the Heisenberg equations, ih̄ �̂
ca �

�ĉa, Ĥ�, ih̄ �̂
cm � �ĉm, Ĥ�. Under the assumption of com-

plete coherence, e.g., �ĉaĉa� � f2
a, appropriate for the

dilute zero temperature condensates, the expectation value
of the Heisenberg equations yields coupled nonlinear equa-
tions of motion that replace the single-condensate Gross-
Pitaevskii equation [11–13]:

ih̄ �fa �

∑
2

h̄2=2

2m
1 lana 1 lmnm

∏
fa 1

p
2 afmf�

a ,

ih̄ �fm �

∑
2

h̄2=2

4m
1 e 1 lmnm 1 lna

∏
fm 1

a
p

2
f2

a .

(3)

In Eq. (3), na and nm denote the atomic and molecular
condensate densities: na � jfaj

2 and nm � jfmj
2. The

a coupling terms describe coherent intercondensate ex-
change of atom pairs. Note that the condensate coherence
of the fields is crucial in obtaining Eq. (3)— if not for the
atomic condensate, �ĉaĉa� � 0.

Current experiments resonate on molecular states of
high vibrational quantum number y. Consequently, inter-
actions that change the molecular state (decreasing y) are
particularly relevant. The “ fragility” of these molecules
is expressed by high rate constants cm,a and cm,m for
state-changing collisions with atoms and other molecules
(estimates [14] give cm,a � 1029 10211 cm3 s21, as
compared to ca,a � 10214 cm3 s21 for binary atom state
changing collisions). For noncondensed systems, the loss
processes can be accounted for by a rate equation, �nm �
2�cm,ana 1 cm,mnm�nm. For BEC systems, the same col-
lisions affect the coherent dynamics. A lowest-order per-
turbation treatment modifies the �fm equation by rendering
the interaction strengths absorptive: l ! l 2 ih̄cm,a�2
and lm ! lm 2 ih̄cm,m�2.

In the off-resonant limit, which we define here as e ¿
ln and e ¿ lmn, where n denotes the atomic conden-
sate particle density, n � na 1 2nm, the molecule fraction
is small and the state-changing molecular collisions de-
stroy the condensate slowly. In spite of the smallness of
the molecular condensate, the dynamical response to a sud-
2692
den change of the magnetic field strength (i.e., detuning)
carries a detectable signature of the condensate: Josephson-
like oscillations of the atomic and molecular popula-
tions. In this limit, propagation of the atomic condensate
is hardly affected by the molecular condensate: fa �p

n exp�2ilant�h̄�. In this approximation, the molecular
field of a homogeneous system evolves according to

ih̄ �fm �

∑
e�t� 1 ln 2 i

gm

2

∏
fm

1
an
p

2
exp�22ilant�h̄� , (4)

where gm denotes the decay rate of a single molecule
imbedded in the atomic condensate: gm�h̄ � cman. Un-
der a sudden change of the detuning, from e � ein to
e � ef at t � 0, the molecular field, initially at fm�t �
0� � f0, evolves as

fm�t� � f` exp

∑
2

it
h̄

�2lan�
∏

1 �f0 2 f`�

3 exp

∑
2

it
h̄

�ef 1 ln�
∏

exp

µ
2

gmt
2h̄

∂
, (5)

where f` is the molecular field value at large times,
t ¿ �h̄�gm�, f` � 2an��

p
2 �ef 1 ln 2 2lan 2

igm�2�� � 2an��
p

2 ef�. The molecular population os-
cillates with angular frequency ef 1 ln 2 2lan � ef ,
and magnitude 2jf`�f0 2 f`�j exp�2gmt�2h̄�, damped
out on the scale of the single molecule lifetime. At a
later time, the system has relaxed to its “quasiequilib-
rium” and the molecular field takes on its stationary
value, f`. For more general off-resonant detuning
variations, populations oscillate if j �e�ej ø gm�h̄, or,
equivalently, if j �B��B 2 Bm�j ø gm�h̄. In the opposite
limit, j �e�ej ø gm�h̄, the system follows its equilibrium
value adiabatically: fm�t� � 2an�t��

p
2 e�t�. For near-

resonant detuning changes [15], the qualitative picture
remains: damped population oscillations appear, while
molecular decay depletes the condensate, as illustrated in
Fig. 1. Experimentally, the oscillations would show, for
example, in a modulation of the image intensity obtained
with light that is near resonant with the molecules. Con-
trary to Rabi oscillations of atomic populations, the atom/
molecule populations are a pure long-range coherence
effect. Even if the relative velocity of the colliding atoms
were so low that the atom-molecule populations could
oscillate in an individual collision (before the molecule
breaks up into atoms that move apart), such oscillations
set in when the atoms “meet.” In a picture that describes
the atoms as classically moving particles, these encoun-
ters occur at random times, and any oscillations wash out,
as we expect from an incoherent process.

We assume that boson decay is negligible on the time
scale of observation, and that the system has reached
its ground state [16]. The coherent atom-molecule cou-
pling energy, �Ĥat-mol� � �a�

p
2 �

R
d3r 	f�

mf2
a 1 c.c.
,
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FIG. 1. Plot of the particle densities: the total condensate
density, n � na 1 2nm, is shown in the full line, the atomic
density na in the dashed line, and the molecular density nm
in the dash-dotted line. The calculation is for a homogeneous
BEC that was initially in equilibrium at density n � 1014 cm23

when the detuning experienced a sudden shift from e �
50ln to e � 2ln. The interaction parameters, ln � lmn �
lan � a

p
n � 105 Hz, and collision rates, cma � cmm � 5 3

10210 cm3 s21 are realistic.

couples the relative condensate phases, so that the lowest
energy is reached for a specific phase difference: fm , 0
if we choose fa . 0. The energy per atomic particle, e �
E�N � �Ĥ��N , of a homogeneous BEC, confined to a
volume V, is then

e �
N
V

Ω
la

2
f2

a 1
lm

2
f2

m 1 lfmfa

æ

2

r
N
V

	a
p

2fm fa
 1 efm , (6)

where fa ( fm) denotes the fraction of atoms (molecules),
fa � Vna�N , ( fm � Vnm�N). Since fa � 1 2 2fm,
the energy is a function of the molecule fraction, the ground
state value of which is determined by minimizing e.

In the ultradilute limit, V ¿ N�lr�a�2, where lr is
representative of the interaction strengths (la, lm and l),
the interaction energy �lr �N�V� can be neglected. Close
to resonance, jej ø a

p
�N�V�, the detuning is also negli-

gible and the molecule fraction that minimizes the energy
is fm � 1�6. However, the pressure of the on-resonant
ultradilute system, P � 2≠E�≠V � 2a

p
n n��3

p
3 �, is

negative and the system is mechanically unstable. Inter-
estingly, this instability does not necessarily imply col-
lapse. As the system responds to the negative pressure
by decreasing its volume, the interaction energy (�V21),
growing faster than the coupling energy (�V21�2), can
stabilize the system. In Fig. 2, we show the energy as a
function of the atomic particle density. For near-resonant
detuning, the tunneling energy dominates in the ultradilute
limit, causing the energy to decrease with increasing den-
FIG. 2. Ground state energy per atomic particle as a func-
tion of the density at different detunings, e. The curves
were calculated using realistic values: a reference density
n0 � 1014 cm23, and interaction strengths la � a�

p
n0, lm �

2a�
p

n0, and l � 0.2a�
p

n0. The densities at which the min-
ima occur for the two curves of lowest detuning are the self-
determined densities that a “ free” condensate would adopt in
the ground state.

sity. In the high density limit, V ø N�lr�a�2, the inter-
action energy dominates and, for the interaction strengths
of Fig. 2, the energy increases linearly with density. In be-
tween, the energy reaches a minimum in the density region
��a�lr�2, where interaction and tunneling energies com-
pete. The minimum suggests that the unconfined physi-
cal system relaxes to its lowest energy state by adjusting
its volume to take on the density of minimum energy.
Such self-determined density is a typical liquidlike prop-
erty, but the calculated values for scattering lengths and a

parameter (e.g., for the observed Na resonances) give self-
determined densities �1014 1015 cm23. The low value is
interesting, as the Feshbach resonance could give the first
example of a rarified liquid. It is also important, as the
condensate could survive spin flip and recombination long
enough for the system to be studied.

A direct observation of the liquidlike behavior suggests
itself: after switching off the trapping potential, the lique-
fied condensate remains as a droplet. In a trap, the lique-
fied condensate takes on a distinct shape, which we now
determine for a large condensate in a shallow trap. In a
Thomas-Fermi description the local density follows from
equating a local chemical potential m�n, e� to the dif-
ference of the system’s chemical potential, mT , and its
potential energy. Furthermore, not all atomic particles ex-
perience the same external potential: we assume an opti-
cal trap in which the atoms experience a trapping potential
V �r�, but the molecules do not. Alternatively, we may
pretend that all atomic particles experience the V �r� po-
tential, as long as we subtract the molecule contribution
2693
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by assigning a local detuning e 2 2V �r� to the molecules.
The Thomas-Fermi equation then reads

m�n; e 2 2V � � mT 2 V . (7)

At the edge, the density abruptly decreases from its self-
determined value, ns, to zero. Around the energy mini-
mum of the homogeneous system,

e � es 1
1

2kns

µ
n 2 ns

ns

∂2

. (8)

where the self-determined density ns, the minimum energy
es, and the compressibility k (k21 � 2V≠P�≠V �
n3

s≠2e�≠n2) all depend on the detuning. The chemi-
cal potential m�n; e�, corresponding to Eq. (8), m �
≠E�≠N � e 1 n≠e�≠n, is

m � es 1
1

kns

µ
n 2 ns

ns

∂
1

3
2kns

µ
n 2 ns

ns

∂2

. (9)

Finally, in a shallow trap of potential variation significantly
less than a

p
ns, the spatial variation of the detuning may

be neglected, e 2 2V � e, and Eq. (7) gives

n�r� �
ns

3
�2 1

p
1 1 6kns�Vm 2 V �r�� � , (10)

where Vm denotes the potential at the equipotential sur-
face of the boundary. The trap compresses the middle of
the droplet causing a density increase that is determined by
the compressibility. We estimate the magnitude of the on-
resonant compressibility as k � �lrn2

s �21. Thus, if the
density and size of the liquefied atom/molecule conden-
sate is of the order of typical atomic condensates (ns �
1014 cm23, Vm � lrns), then the trap increases the rela-
tive density �n�ns� by a factor of order 1 (e.g., from
1014 cm23 at the edge to 2 3 1014 cm23, in the middle).

In summary, we have pointed out that the ground state
of a Feshbach resonant BEC is a hybrid atomic/molecu-
lar condensate. The atomic and molecular condensates in-
teract by coherently exchanging pairs of atoms, and we
have discussed implications of this manifestation of quan-
tum coherence: Josephson-like population oscillations in
response to a sudden change of the detuning, and the near-
resonant liquefaction of the condensate ground state.
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