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Barnett et al. Reply: Torcini et al. [1] raise some inter-
esting issues. Their main point is that the diffusion co-
efficient of a dilute gas diverges with decreasing density,
while the Lyapunov exponent tends to zero; surely they
cannot be related by a 1

3 power rule.
However, Torcini et al. overlook elementary dimen-

sional analysis, which shows that the proportionality
constant in the relationship would have to be density de-
pendent. Equivalently, the Lyapunov exponent and dif-
fusion constant must be rescaled by system parameters
into dimensionless quantities before being compared by
the 1

3 power rule. This they have not done. More specifi-
cally, the expression l̃1 ~ D̃1�3 is obtained in the normal-
ization of l̃1 �

l1

vp
and D̃ � D��ma2vp�, where vp �

�4pne2�m�1�2 and a � �3��4pn��1�3. However, the nor-
malization of the simulation results for a hand sphere gas
in Fig. 1 [1] is not that of our expression.

Unfortunately, for a dilute hard sphere gas, the hard
sphere radius and number density can be combined into a
dimensionless quantity by themselves. Consequently, any
arbitrary relationship between the Lyapunov exponent and
diffusion can be matched in the very dilute regime when
density is the control parameter, which is not very useful.

In addition to their main point, Torcini et al. allege that
our example is outside the scope of our theory because it
is a dense plasma, and the Coulomb force is “long range.”
However, the theory requires diluteness only in the sense
that three-body and four-body interactions contribute
negligibly to the autocorrelation integrals for the second
derivative of the potential (i.e., binary collisions). This is
met even for liquid plasmas. Indeed, with dense plasmas,
the Debye length is shorter than the inter-ion spacing so
the effective interaction is short range. Even in a sparse
plasma, the range of the second derivative of the Coulomb
potential goes as �1�r�3 which is still “short range.”

Our ab initio theory yields a fundamental result equat-
ing the Lyapunov exponent to a function of integrals of
autocorrelations for fluctuations in the second derivative
of the potential. The “diluteness” (in the sense of binary
collisions) and equilibrium simplify the function to the 1

3
power of an autocorrelation integral, c0 [Eq. (26)]. The
expressions clearly yield the correct limiting behavior of a
Lyapunov exponent which tends to zero with the density.

We observed that the fluctuation-dissipation theorem (or
Kubo formulas) [2] relates transport coefficients to time
integrals of fluctuation autocorrelations for corresponding
dynamical variables—a general result. This led to our
suggestion that the Lyapunov exponent would be propor-
tional to a positive power of the transport coefficients.

We used self-diffusion as our example and had data
(now published by Ueshima et al. [3]) for a relatively
dense one-component plasma. c1 and c2 bear a simple
relation to c0 such that the solutions of the secular
equation still scale as c

1�3
0 . Barnett and Tajima [4] applied

the ab initio theory in detail to a one-component plasma.
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The real substance of Torcini et al.’s criticism is that
the second derivative autocorrelation does not seem to
parallel the velocity autocorrelation for a dilute gas. Why
might this be?

The velocity autocorrelation integral in a gas is domi-
nated by the large times between collisions—indicative
of the increasingly ballistic nature of the particle motions.
The natural length scale is a mean free path which goes as
inverse density. In the limit of ballistic motion, there are
no collisions and no fluctuations.

By contrast, in a liquid, a molecule spends time rat-
tling within a cage made by its neighbors. Diffusion takes
place in hops from cage to cage, mediated by collisions.
The hop represents a significant mean velocity fluctuation.
Similarly, the second derivative autocorrelation is domi-
nated by the duration of the collisions themselves (i.e., a
dissipative process). In the liquid regime, the cage size,
which goes as the 1

3 power of the inverse density, provides
the natural length scale.

Transport, in general, has a coherent (e.g., ballistic) part
and a dissipative part. The Lyapunov exponent parallels
dissipative transport only. Hence, our original proposal
needs to be read with this caution.

Our Lyapunov theory cannot be applied naively to
hard spheres because the hard sphere potential is not
differentiable. But the effort should be made because of
the historical importance of this abstraction.

A 1
3 power relation between short time exponential

expansion and long term diffusion was found by Seki
et al. [5], and Dupree [6] found, for plasma turbulence,
that a mode’s growth rate was proportional to the 1

3 power
of the velocity diffusion coefficient. It may be a feature
of systems where particles behave singly as if they are
scattering off a chaotic background.

Our method clearly makes a very general connection
between fluctuations and the largest Lyapunov exponent.
Equally clearly, we are far from understanding fully the
fascinating connection between Lyapunov expansion in
phase space and dissipative transport processes.
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