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Error-Correcting Codes That Nearly Saturate Shannon’s Bound
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Gallager-type error-correcting codes that nearly saturate Shannon’s bound are constructed
insight gained from mapping the problem onto that of an Ising spin system. The performanc
the suggested codes is evaluated for different code rates for both finite and infinite message lengt
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Efficient information transmission plays a central rol
in modern society, taking a variety of forms, from
telephone and satellite communication to storing a
retrieving information on disk drives. Error-correcting
codes are commonly used in most methods of informati
transmission to compensate for noise corrupting the d
during transmission; they require the use of addition
information transmitted together with the data itself. Th
percentage of informative transmitted bits determin
the coding efficiency and subsequently the speed
communication channels and the effective storage sp
on hard disks. In his seminal paper of 1948, Shann
[1] derived the channel capacity, providing bounds on t
code rate for which codes, capable of achieving perfe
retrieval for a given noise level, can be found. The sear
for efficient, practical error-correcting codes that satura
Shannon’s bound resulted in several practical codes, m
of which are still below Shannon’s bound. Here, w
propose a new approach based on insight gained fr
the study of Ising spin systems with low-connectivit
multispin interactions. Adapting our method to Gallager
error-correcting codes [2], one obtains codes that nea
saturate the limits set by Shannon.

In a typical scenario, a message comprisingN binary
bits is transmitted through a noisy communication chann
the received string differs from the transmitted one due
noise which may flip some bits. We identify the flipping
rate—f [ �0 : 1�—in a binary symmetric channel as the
fraction of bits that change their value from 0 to 1 or from
1 to 0. We focus on this noise model as it can be eas
interpreted within the framework of Ising spin system
however, other noise types may also be considered,
may be more realistic in some scenarios. The receiv
can correct the flipped bits only if the source transmi
M� f� . N bits; the ratio between the original numbe
of bits and those of the transmitted messageR � N�M
constitutes the code rate for unbiased messages. Shan
[1] derived the channel capacity and provided bounds
the maximal code rateRc, for a given flip ratef and
code bit error probabilitypb, for which codes, capable of
achieving perfect retrieval, exist. The maximal code ra
equals the channel capacity and is given explicitly [3] b

Rc � �1 2 H2� f����1 2 H2�pb�� , (1)
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whereH2�x� � 2x log2�x� 2 �1 2 x� log2�1 2 x�.
Shannon’s theory is nonconstructive, and the ma

good algorithms that have been introduced over the ye
[4] fall short of saturating Shannon’s bound, althoug
they may provide close-to-optimal performance in speci
scenarios. Even the performance of the celebrated tu
code [5] is somewhat below Shannon’s bound.

One error-correcting code which recently becam
popular is the Gallager code (and its variations) [2,6–8
which was abandoned shortly after its introduction du
to the limited computational abilities of the time. In thi
method, representing a special case of parity-check cod
the transmitted message comprises the original mess
itself and additional bits, each of which is derived from
the parity of a sum of certain message-vector bits. T
choice of the message-vector elements used for gene
ing single code-word bits is carried out according to
predetermined random setup and may be represented
product of a randomly generated matrix and the messa
vector in the manner explained below. Decoding th
received message relies on iterative probabilistic metho
such as belief propagation [6,9].

It has been shown that, by using Gallager-type metho
and specific choices of the encoding/decoding matrix,
is possible to improve the maximal practically achievab
code rate [6–8] although results are still somewhat belo
Shannon’s capacity. The root of the problem is the i
evitable tradeoff between improving the code’s correctiv
capabilities and the need for a practical and reliable ite
tive decoding process, guaranteed to converge from a
initial condition (i.e., that will not require additional, typi-
cally unavailable, information about the message itsel
This goal is achieved by understanding the physical ch
acteristics of the problem and devising a new method bas
on this insight. As Gallager-type methods form the bas
of our proposal, we will now explain explicitly the version
we employ—the MN code [6].

In the MN code, one constructs two sparse matricesA
and B of dimensionalitiesM 3 N and M 3 M, respec-
tively. The matrixA hasK nonzero (unit) elements per
row andC�� KM�N� per column whileB hasL per row/
column. The matrixB21A is then used for encoding the
messages:

t � B21As �mod2� .
© 1999 The American Physical Society
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The received message comprises the transmitted vector
corrupted by the noise vector n: r � t 1 n �mod 2�.
Decoding is carried out by employing the matrix B to
obtain z � B�t 1 n� � As 1 Bn �mod 2�, and requires
solving the equation,

�A, B�
∑

s0

n0

∏
� z �mod 2� ,

where s0 and n0 are the unknowns. This may be carried
out using methods of belief network decoding [6,9], where
pseudoposterior probabilities, for the decoded message bits
being 0 or 1, are calculated by solving iteratively a set of
equations for the conditional probabilities of the code-word
bits given the decoded message and vice versa. For exact
details of the method used, see [6].

Most studies of Gallager-type codes have been carried
out via methods of information theory (e.g., [6]). The first
link between a special case of Gallager’ s method, where
B � I is the identity matrix, and the realm of physical
spin systems was established by Sourlas [10] by mapping
the problem onto that of a Hamiltonian system, replacing
the original Boolean variables by binary ones which are
analogous to spins in Ising-type systems with multispin
interactions. For this simple case the system is described
by the Hamiltonian

H � 2
X

�i1,i2,...,iK �
Ji1,i2,...,iK ŝ0i1

ŝ0i2
· · · ŝ0iK

, (2)

where 	ŝ0i
 are the binary dynamical variables �61�,
used in the decoding process. The tensor Ji1,i2,...,iK �
6ŝi1 ŝi2 · · · ŝiK , with probabilities 1 2 f and f correspond-
ingly, represents the received code word corrupted by
noise during transmission, ŝ being the binary representa-
tion of the original Boolean message vector s; the choice
of indices i1, i2, . . . , iK corresponds to the nonzero row
elements of the matrix A. Under a gauge transformation,
this model is mapped onto an Ising spin system with fer-
romagnetic bias; finding the ground state of the Hamil-
tonian is closely related to finding the Bayes optimal
posterior under a certain noise level [10]. This mapping
onto Hamiltonian spin systems, suggested by Sourlas for
highly connected systems, was recently extended to par-
ticular forms of sparse matrices A (where B � I) as well
as to certain B matrices [11]. In this extended framework,
K and L represent the number of multispin interactions
among the signal and noise components, respectively.

Our method uses the same structure as the MN codes and
builds on insight gained from the study of physical systems
with symmetric and asymmetric [12] multispin interactions
and from examining a special case of Gallager’ s method
[10,11]. These theoretical studies indicate that one may
obtain superior capabilities, in terms of the achievable
code rate, by choosing high K and L values; however,
they come at the expense of poor decoding performance
as the corresponding basins of attraction shrink rapidly
with the increasing K and L values, making it essential
to have high initial overlap between the original message
and the dynamical variables for the iterative decoding
process to converge successfully. Such information is
clearly unavailable in practical scenarios. One should
emphasize that the basin of attraction shrinks dramatically.
In the system suggested by Sourlas, for instance, the
initial overlap (magnetization in the physical system) m �
1�N

PN
i�1 �2si 2 1� �2s0i 2 1� required in the case of K �

6 should be higher than 0.99 for a successful convergence;
this has been shown by numerical simulations as well as
by a mean-field calculation to be presented elsewhere. On
the other hand, highly robust iterative decoding is obtained
for low K and L values at the expense of suboptimal
capabilities (i.e., low end overlap).

The method presented here is based on constructing
the matrices A and B in a manner that corresponds to
the gradual introduction of higher connectivity sparse sub-
matrices, exploiting the excellent convergence properties
of codes based on low K and L values with the superior
performance of high-K codes. More specifically, one
aims at starting with low K and L values, in this case
K 1 L # 3, so as to bring the system to high overlap
values from practically any initial condition; higher values
of K and L, e.g., 3 , K 1 L # 5, may then be used
for bringing the system to a perfect overlap between the
decoded and the original word.

The practical implementation of the encoding is similar
to that of the MN code except that the composed matrix
used, �AjB�, comprises randomly chosen sparse submatri-
ces of different connectivities. The generated code word,
constructed by taking the parity of sums of message vec-
tor bits selected according to the specific choice of A and
B, is then transmitted through the noisy channel. Decod-
ing the corrupted code word is carried out using an itera-
tive process identical to that of Ref. [6] and can take two
forms: (i) A gradual introduction of higher connectivity
submatrix components in the Hamiltonian system used for
decoding following the above description, where the end
result at each stage serves as an initial condition for the
next. This is equivalent, from a physical point of view, to
changing the Hamiltonian as a function of time by gradu-
ally summing over more message bits in Eq. (2). (ii) Using
the composed matrices, including a variety of submatrices
with different connectivities, right from the start. The lat-
ter, which simply correspond to a particular construction
of the matrices A and B in the MN code, has been used in
most of our experiments due to its simplicity, although the
former has shown faster convergence at high noise levels.
In both cases the explicit choice of sites for generating a
specific code-word bit is carried out at random, in a similar
fashion to most Gallager-type codes.

The main question that should be addressed is the
optimal choice of submatrix connectivities. There are
many possibilities for choosing K and L values for
the different stages, and one should examine various
possibilities before arriving at the optimal configuration.
However, there are a few guidelines one should follow:
(i) Initial stages are characterized by low K and L values;
K values are chosen gradually higher, so as to support the
2661
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TABLE I. The critical flip rates fN
c and f`

c obtained by our method for various code rates in comparison to Shannon’s maximal
flip rate fc. Details of the architectures used and their row/column connectivities are also provided.

R N A K B L fN
c f`

c fc

1�3 10 000 N 3 N 1 N 3 3N 2 0.159 0.169 0.174
3�4N 3 N 3 3�4N 3 3N 2 20.170
5�4N 3 N 3 5�4N 3 3N 1

1�4 30 000 3�2N 3 N 1 3�2N 3 4N 2 0.204 0.210 0.2145
N�2 3 N 3 N�2 3 4N 2 20.211
2N 3 N 3 2N 3 4N 1

1�5 36 000 3N 3 N 1 3N 3 5N 2 0.235 0.239 0.2430
2N 3 N 3 2N 3 5N 1 20.240
correction of faulty bits. (ii) One should choose the
number of nonzero column elements as uniformly as
possible, as the number of connections per bit (spin)
defines the corrective input it receives (this is somewhat
in contrast to the approach adopted for irregular Gallager
codes in which column/row connectivity is taken from
some distribution [7,8]). (iii) As in most of these systems
both solutions, with m � 61, are equally attractive, one
should break the inversion symmetry. This may be
achieved by adding some odd connection values to the
mainly even K 1 L values used initially; this assists
in breaking the symmetry from any initialization of the
iterative equations [6] with practically no effect on the
basin of attraction. (iv) To guarantee the inversion of
the matrix B, and since noise bits have no explicit
correlation, we use a patterned structure, Bi,k � di,k 1

di,k15, for the B submatrices with L � 2, and Bi,k � di,k
for L � 1. Other practical points as well as a more
detailed explanation of the physical insight leading to the
optimal choice of connection values and the relation to
Sourlas’ s code will be presented elsewhere.

We conclude this presentation with a demonstration of
the method’s capabilities for three different code rates R �
1�3, 1�4, and 1�5. In each of the cases, we divided the
composed matrix �AjB� to six submatrices characterized
by specific K and L values as explained in Table I; the di-
mensionalities of the full A and B matrices are M 3 N and
M 3 M, respectively. Submatrix elements were chosen at
random according to the guidelines mentioned above. En-
coding was carried out straightforwardly by using the ma-
trix B21A, and the corrupted messages were decoded using
the set of recursive equations of Ref. [6], with random ini-
tial conditions. In each case, T blocks of N-bit unbiased
messages (where exactly 1�2 of the bits are 1) were sent
through a noisy channel of flip rate f (i.e., an exact frac-
tion f of the code-word bits were flipped); both bit and
block error rates, denoted pb and pB, respectively, were
monitored. We performed at least T � 10 000 trials runs
for the smaller systems (N � 10 000, 12 000) and T �
1000 2000 runs for the larger ones (N � 30 000, 36 000)
for each flip-rate value, starting from different initial con-
ditions. These were averaged to obtain the mean bit
error rate and the corresponding variance. In most of
2662
our experiments, we observed convergence after less than
100 iterations, except very close to the critical flip rate.
The main halting criterion we adopted relies on the sta-
tionarity of the first N bits (i.e., the decoded message) over
a certain number of iterations. The decoding algorithm’s
complexity is of O�N� as all matrices are sparse. The in-
version of the matrix B is carried out only once and requires
O�1� operations due to the structure chosen.

In Table I we present the typical architectures used as
well as the maximal flip rate fN

c for which not more
than a single error bit per block has been observed on
average for a particular message length N , the predicted
maximal flip rate f`

c , once finite size effects have been
considered (discussed below), and Shannon’s maximal flip
rate fc defined in Eq. (1). In all these cases one obtains,
on average, perfect retrieval for noise rates that almost
saturate Shannon’s bound for the critical flip rate. Just for
comparison, the corresponding results reported in Ref. [8]
for regular and irregular Gallager codes (R � 1�4), based
on 10 000 trials and N � 16 000, show a critical value
around f � 0.160 in comparison to fN

c � 0.204 and f`
c �

0.210 0.211 reported here.
Figure 1 shows results obtained for code rates R �

1�3, 1�4, and 1�5 and various flip rates; results for each
code rate appear as symbols adjacent to a line representing
Shannon’s theoretical bound for the given code rate and
noise level. Triangles and squares represent mean values
obtained for small and large network sizes, respectively;
variances are smaller than the symbol size. One notes the
existence of finite size effects, manifested in the difference
between the results obtained for different system sizes.
Predicted code-rate values in the N ! ` limit, derived
below, are represented as arrows on the x axis. The results
clearly show that in all the code rates examined our method
comes very close to saturating Shannon’s bound.

The results shown so far are based on finite-N simulation
results. However, as Shannon’s bound itself is based on
infinitely long messages, one cannot expect to saturate
the bound completely for finite-N messages. To assess
the critical flip rate achievable by our method in the
limit of infinitely large systems, f`

c , we monitor two
criticality indicators: (i) The dependence of the block
error distribution on the system size—the transition from
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FIG. 1. Bit-error rate pb as a function of the flip rate for given
code rates R � 1�3, 1�4, and 1�5. Results for each code rate
appear as symbols adjacent to a line representing Shannon’s
bound; triangles and squares represent mean values obtained
for small and large network sizes, respectively, corresponding
to N � 10 000 and 30 000 for R � 1�3, 1�4; N � 12 000 and
36 000 for R � 1�5. Predicted code-rate values in the N ! `
limit appear as arrows on the x axis.

perfect [pB� f� � 1] to no block retrieval [pB� f� � 0],
as a function of the flip rate f, is expected to become
a step function (at f`

c ) as N ! `. If the percentage of
perfectly retrieved blocks in the sample, for a given flip
rate f, increases (decreases) with N , one can deduce that
f , f`

c (or f . f`
c ). (ii) Convergence times as a function

of f-convergence times near criticality usually diverge as
1�� f`

c 2 f�; by monitoring average convergence times for
various f values and extrapolating one may deduce the
corresponding critical flip rate.

In Fig. 2 we ordered the samples obtained for R � 1�5,
f � 0.236, 0.237 (solid and dashed lines, respectively)
and N � 12 000, 36 000 according to their magnetization;
results with higher magnetization appear on the left, and
the x axis was normalized to represent fractions of the
complete set of trials. One can easily see that the fraction
of perfectly retrieved blocks increases with system size
(thick lines) indicating that f , f`

c . Repeating the same
exercise for higher f values, we obtained an estimate of f`

c
reported in Table I. In the inset, one finds log-log plots of
the mean convergence times t for R � 1�3, 1�4, and 1�5
and different N values, carried out on perfectly retrieved
blocks with less than two error bits. The optimal fitting of
expressions of the form t ~ 1�� f`

c 2 f� through the data
provides another indication for the f`

c values, which are
consistent with those obtained by the first method.

To conclude, we have shown that through a successive
change in the connection values, while keeping the connec-
tivity low (#5), one can boost the performance of matrix
based error-correcting codes, getting ever closer to saturat-
ing the theoretical bounds set by Shannon. It is quite plau-
sible that the performance reported here may be improved
upon by fine-tuning the choice of architecture, which is
currently under way. Moreover, it is highly likely that sev-
FIG. 2. The block magnetizations profile for R � 1�5, f �
0.236, 0.237 (solid and dashed lines, respectively) and N �
12 000, 36 000, showing the sample magnetization m vs the
fraction of the complete set of trials. A total of 1000–
10 000 trials (for larger and smaller systems, respectively)
were rearranged in a descending order according to their
magnetization values. The fraction of perfectly retrieved blocks
increases with system size (thick lines). Inset: log-log plots of
mean convergence times t for R � 1�3 and N � 10 000 (�);
R � 1�4, N � 10 000 (�) and N � 30 000 (¶); R � 1�5 and
N � 36 000 (�). The f`

c values were calculated by fitting
expressions of the form t ~ 1�� f`

c 2 f� through the data
(dashed lines for the larger systems).

eral architectures will provide similar performance in the
thermodynamic limit; it would be worthwhile to examine
their finite size behavior above and below saturation which
is of great practical significance.
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