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Optimal Entanglement Enhancement for Mixed States
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We consider the actions of protocols involving local quantum operations and classical communication
(LQCC) on a single system consisting of two separated qubits. We give a complete description
of the orbits of the space of states under LQCC and characterize the representatives with maximal
entanglement of formation. We thus obtain a LQCC entanglement concentration protocol for a single
given state (pure or mixed) of two qubits which is optimal in the sense that the protocol produces,
with nonzero probability, a state of maximal possible entanglement of formation. This defines a new
entanglement measure, the maximum extractable entanglement.

PACS numbers: 03.67.Hk, 03.65.Bz
Entanglement is a basic quantum communication re-
source which can usefully be manipulated to suit particular
tasks [1,2]. In this paper we investigate the manipulation
of a single entangled mixed state comprising two separated
single qubit subsystems. We consider two parties, Alice
and Bob, who each control one subsystem, and who are re-
stricted to carrying out local quantum operations and clas-
sical communication (LQCC). Specifically, the quantum
operations Alice and Bob are allowed to perform are local
unitary transformations and local filtrations. The restric-
tion to local quantum operations ensures that entanglement
is indeed treated as a resource: if nonlocal quantum opera-
tions were allowed, Alice and Bob could create entangle-
ment between them from initially nonentangled states.

The interest of this problem is that since any real-world
quantum communication channel will be imperfect, even
if Alice could create perfect maximally entangled states,
she would never be able to share such states with Bob
simply by sending one subsystem through the channel. So
it is natural to ask whether Alice and Bob can use LQCC
to obtain states with better entanglement from imperfectly
entangled states.

Various entanglement purification protocols have been
suggested. If Alice and Bob share a number of copies
of an imperfectly entangled known pure state, they can
obtain a number of maximally entangled states by carrying
out operations on each state individually or by collective
operations on a number of shared states [1]. The collective
algorithm has a higher asymptotic yield of maximally
entangled states in the limit in which the number of shared
states tends to infinity. Efficient collective algorithms
which give a nonzero asymptotic yield of maximally
entangled states from entangled mixed states have also
been described [2].

In practice, though, the number of states will always be
finite, and Alice and Bob will effectively share a single
entangled state of two subsystems whose state spaces
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are finite dimensional. For this and other reasons—for
example, Alice and Bob might actually have only one
copy of an entangled state of some simple system, or it
may be technologically difficult to implement collective
operations—it is interesting to see what Alice and Bob
can achieve by gambling with the entanglement of a
single state. That is, we would like to know how far the
entanglement of single states could be increased by LQCC
if the outcomes of Alice and Bob’s local measurements
were favorable. The Procrustean algorithm of [1] provides
an answer to this question in the case of pure states. Here
we answer the question for two qubit mixed states, and
in the process illustrate a general approach to the problem
based on identifying quantities invariant under LQCC.

Though most mixed state entanglement distillation pro-
tocols discussed so far involve collective operations on
many states, it has been established that there exist entan-
gled mixed states for which single-state LQCC protocols
can increase entanglement [3,4]. Conversely, it is known
that there exist entangled mixed states, including the im-
portant case of the Werner states, for which no single-state
LQCC protocol can increase entanglement [5–7].

We give here a complete description of the effect of
LQCC on entanglement of a single copy of an arbitrary
mixed state r of two qubits. It has been shown previously
that if Alice and Bob’s local density matrices are com-
pletely random, they cannot increase the entanglement of
formation (EOF) by LQCC [5–7]. Here we show that if
the local density matrices are not random and if the EOF
is nonvanishing, Alice and Bob can always increase the
EOF. Moreover, we construct a procedure that maximizes
the EOF of the final state. This procedure, which is unique
up to local unitary transformations, leaves Alice and Bob
with completely random local density matrices.

Main results.—Throughout, the states considered are
those of a single system comprising two separate single
qubit subsystems. We use the following facts [5].
© 1999 The American Physical Society
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(i) The LQCC protocols we consider map the state r to
states of the form

r0 �
A ≠ BrAy ≠ By

Tr�A ≠ BrAy ≠ By�
, (1)

where A and B are arbitrary operators that act on Alice
and Bob’s Hilbert space, respectively. The only condition
they must obey is AyA # I2, ByB # I2. The protocol
succeeds with probability Tr�A ≠ BrAy ≠ By�. We need
not consider the most general local protocols in which the
final state consists of mixtures of states of the form Eq. (1)
since mixing decreases the EOF.

The operators A and B can be written as

A ≠ B � UAfm,a,m ≠ UBfn,b,n, (2)

where UA, UB are unitary and the filtrations f are
defined by

fm,a,m � m�I2 1 am ? s �

and fn,b,n � n�I2 1 bn ? s � .
(3)

Here m, n, a, b are real numbers, In denotes the identity
operator in n dimensions, and the vector s � �s1, s2, s3�
has the Pauli matrices as components. We can also write
these operators as A � UAFAU 0

A, where FA takes the form
� a1

0
0

a2
� with the ai real, 0 # ai # 1 and UA, U 0

A unitary;
similarly B � UBFBU 0

B. We can thus write any nontrivial
LQCC (i.e., any LQCC which is not the zero map) in the
form

gUA

µ
1 0
0 aA

∂
U 0

A ≠ UB

µ
1 0
0 aB

∂
U 0

B , (4)

where g is a scale factor in the range 0 , g # 1 and
0 # aA, aB # 1.
(ii) The entanglement of formation (or EOF) of a pure
state jc� is defined as E�c� � 2TrrA lnrA � 2TrrB 3

lnrB, where rA � TrBjc� �cj, rB � TrAjc� �cj are the
local density matrices seen by Alice and Bob. For a mixed
state the EOF is defined as [8]: E�r� � min

P
i piE�ci�

where the minimum is taken over all decompositions of r

into pure states r �
P

i pijci� �cij.
In the case of a mixed state comprised of two single qubit

subsystems, Wootters [9] has given an explicit formula for
E�r�, verifying an earlier conjecture of Hill and Wootters
[10]. Let r̃ � s2 ≠ s2r�s2 ≠ s2. Call li the positive
square roots of the eigenvalues of the matrix rr̃ written in
decreasing order. Define the concurrence by

C�r� � max�0, l1 2 l2 2 l3 2 l4� . (5)

Then the EOF of r is

E�r� � H

√
1 1

p
1 2 C2�r�

2

!
, (6)

where H�p� � 2p log2p 2 �1 2 p� log2�1 2 p�.
(iii) Consider a general density matrix r of two qubits.

It can be written as

r �
1
4

�I4 1 a ? s ≠ I2 1 I2 ≠ b ? s 1 Rijsi ≠ sj� .

(7)

In [5] it was shown that under LQCC of the form Eq. (2)
the positive square roots of the eigenvalues of the matrix
rr̃ transform as

li ! l0
i �

m2n2�1 2 a2� �1 2 b2�
t�r; m, a, m; n, b, n�

li , (8)

where t is the probability that the LQCC succeeded
t�r; m, a, m; n, b, n� � m2n2��1 1 a2� �1 1 b2� 1 2a�1 1 b2�n ? a 1 2b�1 1 a2�m ? b 1 4abRijnimj	 . (9)
Thus the concurrence also transforms as

C�r0� �
m2n2�1 2 a2� �1 2 b2�

t�r; m, a, m; n, b, n�
C�r� . (10)

It follows from Eq. (8) that the ratios li�lj are invariant
under LQCC. We add here the necessary qualification
that the LQCC must be invertible.

Now our argument runs as follows. We consider states
r which have nonzero EOF and which are not Bell diago-
nal [recall that a state is Bell diagonal if all its eigenvectors
are maximally entangled; equivalently it satisfies trA�r� �
trB�r� � 1

2I2, i.e., a � b � 0 in the expression for r

given in Eq. (7)]. We show in Theorem 1 that there is
an LQCC protocol which increases the EOF of r with
nonzero probability. We show further in Theorem 3 that
this process can be iterated to obtain an LQCC protocol
which, with nonzero probability, maps r to a Bell diagonal
state with maximal EOF. In Theorem 4 we show that this
is the unique optimal protocol up to local unitary rotations.
Theorem 1: Let r be a density matrix of a state with
nonzero EOF written as in Eq. (7). If a or b are nonzero,
then there is an invertible LQCC A ≠ B mapping r with
nonzero probability to a density matrix r0 with higher EOF
than r.

Proof: For small a and b, Eq. (10) takes the form

C�r0� 

1

1 1 2am ? a 1 2bnb
C�r� . (11)

Hence if a or b are nonzero and if C�r� is nonzero we
can always find an LQCC which, with nonzero probability,
increases the EOF, by choosing appropriately small a and
b and suitable m and n.

We now need a technical lemma about the topology of
the space R of LQCC operations which do not decrease the
EOF of a given r. The result, namely, that R is compact,
is needed in Theorem 3.
2657



VOLUME 83, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 27 SEPTEMBER 1999
Lemma 2: Let r have nonzero EOF. There exists a posi-
tive bound d�r� such that if the state r0 has greater
EOF than r and can be obtained from r with nonzero
probability by LQCC, then there exists some LQCC from
which r0 can be obtained from r with probability greater
than d�r�. Furthermore, let R be the space of LQCC which
succeed with nonzero probability in producing a density
matrix with EOF greater than or equal to that of r. Then
R is compact.

Proof: Fix r. If we write A ≠ B in the form (4), r0 is
independent of the scale factor g, so that any r0 obtainable
from r can be obtained by a normalized LQCC, taking the
form (4) with g � 1. For e . 0, define Se to be the set of
normalized LQCC of the form (4) with min�aA, aB� � e.
Let Ee be the maximum EOF of any density matrix r0

obtained from r by the action (1) for some A ≠ B in Se .
Since Ee is continuous in e and tends to zero as e tends
to zero, there is some positive e0 such that Ee is less than
or equal to the EOF of r for e # e0 and such that e0�r�
is maximal with this property. Let Te0 be the union for
1 $ e $ e0 of Se . Now if a nontrivial LQCC A ≠ B anni-
hilates r, i.e., A ≠ BrAy ≠ By � 0, then A ≠ Bjci� � 0
for all i (where jci� are the eigenvectors of r with nonzero
eigenvalue). Thus either A or B must be a rank one
projector up to a scale factor. Hence no LQCC in Te0

can annihilate r. Also Te0 is compact. So the probabil-
ity Tr�A ≠ BrAy ≠ By� of obtaining r0 from r via the
LQCC is nonzero everywhere in Te0 and attains a nonzero
lower bound d�r� on the set. This is a lower bound for
all LQCC increasing the EOF of r, since no LQCC out-
side Te0 does. The compactness of R follows since it is a
closed subset of Te0 .

Theorem 3: Let r written as in Eq. (7) be a density
matrix with nonzero EOF. If a or b are nonzero, then
there exists an invertible LQCC which, with nonzero
probability, maps r to a Bell diagonal density matrix
r0 which has the maximum EOF of any density matrix
obtainable from r by LQCC.

Proof: Since by Lemma 2 the space of normalized
LQCC which do not decrease the EOF of r is compact, and
the EOF is a continuous function, the lowest upper bound
on the attainable EOF is attained by some LQCC. The
corresponding density matrix r0 must have a0 � b0 � 0;
otherwise, by Theorem 1, its EOF could be increased.

Theorem 4: Let r be the density matrix of a state with
nonzero EOF. Then the Bell diagonal state r0 which can
be obtained from r by LQCC is unique up to local unitary
transformations. This r0 has maximal possible EOF.

Proof: We start by calculating the positive square roots
li of the eigenvalues of the matrix rr̃. We order them

as l1 $ l2 $ l3 $ l4. The ratios li

lj
are invariant un-

der the actions of invertible LQCC; see Eq. (8). We char-
acterize these ratios by the three numbers ci � li�l1,
i � 2, 3, 4.

From Theorem 3 we know that r can be brought to
Bell diagonal form by LQCC. We shall now show that
2658
the Bell diagonal form is uniquely specified, up to local
unitary transformations, by the ratios ci . To this end
consider a Bell diagonal state rR � 1

4 �I4 1 Rijsi ≠ sj�
with positive EOF. Local unitary operations UA ≠ UB

transform rR to rR0 � 1
4 �I4 1 R0

ijsi ≠ sj�, where R0 �
�O1�TR�O2� for some elements O1 and O2 of SO�3�: any
pair of Oi can be produced by suitable choices of UA, UB.
By using a singular value decomposition [11] of R, we can
find orthogonal Oi such that R0 is diagonal, so we can find
local unitary operations mapping rR to the form

rr1,r2,r3 �
1
4

√
I4 1

3X
i�1

risi ≠ si

!
, (12)

with all ri having the same sign and with r1 # r2 # r3.
Now rr1,r2,r3 � r̃r1,r2,r3 ; hence the eigenvalues of

rr1,r2,r3 are equal to the li . These eigenvalues are
1
4 �1 2 r1 2 r2 2 r3�, 1

4 �1 1 r1 1 r2 2 r3�, 1
4 �1 1 r2 1

r3 2 r1�, 1
4 �1 1 r3 1 r1 2 r2�. Since rr1,r2,r3 is assumed

to be entangled, the ri are all less than or equal to zero.
(This may be verified by checking that when the ri are all
positive the concurrence vanishes.) We can now express
the ratio’s ci in terms of the ri . For instance, c2 � �1 1

r2 1 r3 2 r1���1 2 r1 2 r2 2 r3�. It is straightforward
to verify that the ri can be uniquely expressed in terms of
the ci by inverting these equations. Therefore the Bell
diagonal state of the form Eq. (12) to which r can be
brought is unique.

Conclusions.—We have shown that any entangled state
r of two qubits whose local density matrices are not com-
pletely random can be brought by LQCC to a unique (up
to local unitary transformations) Bell diagonal state. No
other LQCC can bring r to a state with more entanglement.
To obtain an explicit expression for this optimal protocol,
one should write explicitly the conditions that the den-
sity matrix r0 obtained from has completely random local
density matrices TrAr0 � TrBr0 � I2. We have shown
that these equations have a unique solution for the coeffi-
cients a, m, b, n of the filtrations fm,a,m, fn,b,n in Eqs. (2)
and (3).

Our optimal protocol should be compared to the Pro-
crustean algorithm for concentrating pure state entangle-
ment of [1] which brings a nonmaximally entangled pure
state to a maximally entangled pure state by LQCC. The
main difference between the two methods is that the opti-
mal mixed state protocol generally requires Alice and Bob
to carry out different filtrations and then tell each other
whether the filtrations have succeeded. Only if both suc-
ceed do they obtain (and know that they have) the state
with maximum extractable entanglement. The Procrustean
algorithm on the other hand can be realized without clas-
sical communication between Alice and Bob, or with only
Alice carrying out the filtration and communicating the re-
sult to Bob.

In [5] it was noted that the ratios ci � li�l1 are invari-
ant under invertible LQCC. The argument used in proving
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Theorem 4 also shows that for entangled states they consti-
tute an exhaustive set. Indeed we can bring any entangled
r to the form Eq. (12) which is characterized by three pa-
rameters ri and they are in one to one correspondence with
the ci . This gives a characterization of locally equivalent
entangled density matrices.

Our method also introduces an interesting combination
of these invariants: the maximal extractable entanglement
of a density matrix. This quantity provides a new charac-
terization of the entanglement of a state. It has the impor-
tant property that it decreases under mixing (this follows
from the convexity of the EOF [8]).

We are very grateful to Sandu Popescu for several
helpful discussions. Part of this work was carried out at
the 1998 Elsag-Bailey-I.S.I. Foundation research meeting
on quantum computation and at the 1998 workshop of
the Benasque Center for Physics. A. K. thanks the Royal
Society for financial support.
[1] C. H. Bennett, H. Bernstein, S. Popescu, and B. Schu-
macher, Phys. Rev. A 53, 2046 (1996).

[2] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76,
722 (1996).

[3] N. Gisin, Phys. Lett. A 210, 151 (1996).
[4] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Rev. Lett. 78, 574 (1997).
[5] N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett.

81, 3279 (1998).
[6] A. Kent, Phys. Rev. Lett. 81, 2839 (1998).
[7] M. Horodecki, P. Horodecki, and R. Horodecki, quant-ph/

9807091.
[8] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[9] W. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[10] S. Hill and W. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
[11] See, e.g., D. W. Lewis, Matrix Theory (World Scientific,

Singapore, 1991), p. 262.
2659


