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Chaos in Quantum Dots: Dynamical Modulation of Coulomb Blockade Peak Heights
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We develop a semiclassical theory of Coulomb blockade peak heights in quantum dots and show that
the dynamics in the dot leads to a large modulation of the peak height. The corrections to the standard
statistical theory of peak height distributions, power spectra, and correlation functions are nonuniversal
and can be expressed in terms of the classical periodic orbits of the dot that are well coupled to the
leads. The resulting correlation function oscillates as a function of the peak number in a way defined
by such orbits. In addition, the correlation of adjacent conductance peaks is enhanced. Both of these
effects are in agreement with recent experiments.
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The electrostatic energy of an additional electron on
a quantum dot—a mesoscopic island of confined charge
with quantized states—blocks the flow of current through
the dot, an effect known as the Coulomb blockade [1].
Current can flow only if two different charge states of
the quantum dot are tuned to have the same energy; this
produces a peak in the conductance of the dot whose
magnitude is directly related to the magnitude of the wave
function near the contacts to the dot. Since dots are
generally irregular in shape, the dynamics of the electrons
is chaotic, and the characteristics of Coulomb blockade
peaks reflect those of wave functions in chaotic systems
[2–4]. Previously, a statistical theory for the peaks was
derived [2,3] by assuming these wave functions to be
completely random and uncorrelated with each other. The
experimental data [5,6] for the distribution of the Coulomb
blockade peak heights were found to be in excellent
agreement with the predictions of the statistical theory,
thus supporting the conjecture of effective “randomness”
of the quantum dot wave functions.

It therefore came as a surprise when several recent ex-
periments [6–8] demonstrated large correlations between
the heights of adjacent peaks. The effect of nonzero tem-
perature (when several resonances contribute to the same
peak) was found to be insufficient to account for these
correlations [9]. To explain the correlations, the enhance-
ment due to spin-paired levels [8,9], due to a decrease of
the effective level spacing found in density functional cal-
culations [10], and due to level anticrossings in interacting
many-particle systems [11] was proposed. However,
we show here that peak height correlations already arise
within an effective single-particle picture of the electrons
in the quantum dot. The specific internal dynamics of the
dot, even though it is chaotic, modulates the peaks: because
all systems have short-time features, chaos is not equiva-
lent to randomness. The predicted dynamical modu-
lation is exactly of the type in the experiments [6–8].

To study the nonuniversal effects of the dynamics of a
particular dot, we derive a relation between the quantum
conductance peak height and the classical periodic orbits
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in the dot. The main effect is that as a system parame-
ter varies—the magnetic field or the number of electrons
in the dot in response to a gate voltage, for instance—the
interference around each periodic orbit oscillates between
being destructive and constructive. When the interference
is constructive for those periodic orbits which come close
to the leads used to contact the dot, the wave function is
enhanced near the leads, the dot-lead coupling is stronger,
and so the conductance is larger. Likewise, destructive in-
terference produces a smaller conductance. The resulting
modulation can be substantial, as shown in Fig. 1. Simi-
lar short-time dynamical effects have been noted in other
contexts such as atomic and molecular spectra [12–14],
eigenfunction scarring [14,15], magnetotransport in anti-
dot lattices [16], and tunneling into quantum wells [17–
20]. Such modulation is completely omitted in theories in
which the wave function is assumed to change randomly
as the system changes [2,3].

Our starting point is the connection between the peak
height and the width of the level in the quantum dot. This
connection is well known [21]; it allows us to express
the conductance in terms of single-particle quantities. We
consider a dot close to two leads (Fig. 1, inset) so that

FIG. 1. The peak conductance from tunneling through subse-
quent energy levels for the stadium billiard is shown in the
inset. Each peak is placed at the wave vector k corresponding
to its level; R is the radius of the half-circle parts of the sta-
dium. A Gaussian lead wave function appropriate for tunneling
from a single transverse mode is used with width kaeff � 15.
© 1999 The American Physical Society
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the width, G, of a level comes from the tunneling of the
electron to either lead. When the mean separation of levels
is larger than the temperature T , which itself is much larger
than the mean width, the electrons pass through a single
quantized level in the dot, and the conductance peak height
is [21]

Gpeak �
e2

h
pG

4kT
. (1)

Here for simplicity we consider symmetrically placed
leads—the total width is equally split between tunneling
to the right and left leads—spinless particles, and tempera-
ture much smaller than the level spacing.

The width of the level is related by Fermi’s Golden
Rule to the square of the matrix element for tunneling
between the lead and the dot, M�!d . A convenient
expression for the matrix element in terms of the lead and
dot wave functions, C� and Cd , respectively, was derived
by Bardeen [22] and can be expressed as [17,18]

M�!d �
h̄2

m�

Z
S

dS C��r��Cd�r� , (2)

where the surface S is the edge of the quantum dot. G,
then, depends on the square of the normal derivative of the
dot wave function at the edge weighted by the lead wave
function. The dot wave function Cd is calculated for the
effective potential, which accounts for interactions in the
dot in the mean-field approximation. Writing the product
of the two Cd’s in G as a Green function G�r , r 0� and
using the standard semiclassical expression for the latter
[12], we express G as a sum over the classical trajectories
which start at r on the edge of the dot near the lead and
end at r 0 which is also on the edge near the lead.

Tunneling from the lead to the dot is dominated by the
lowest transverse energy subband in the constriction be-
tween the lead and the dot [3]. Therefore, for the cal-
culation of the tunneling matrix element the transverse
potential in the tunneling region can be taken quadratic:
U� � k�y 2 y��2. In this case the transverse dependence
of the lead wave function is simply a harmonic oscilla-
tor wave function, so that at the edge of the dot C� �
c� exp�2�y 2 y��2�2a2

eff�, where ŷ represents the direc-
tion tangential to the boundary of the dot, y� is the cen-
ter of the lead and constriction, and the effective width
is aeff �
p

h̄� 4
p

2km�. While the exact form of the lead
wave function is not crucial, the h̄ dependence of the
width is important for the semiclassical argument which
follows; note that aeff �

p
h̄ does not depend on a particu-

lar transverse potential.
Using this information about C� in the expression for

M�!d , we see that the lead wave function restricts the
integration to a semiclassically narrow region of width
aeff �

p
h̄. This allows one to express the contribution

of the open trajectories entering the Green function in
terms of an expansion near their closed neighbors. In
the resulting expression for G, the contribution of each of
these closed orbits is suppressed by a factor exponentially
small in Dp2

y , where Dpy is the change of transverse
momentum after one traversal. This suppression is the
effect of the mismatch of the closed orbit (momentum)
with the distribution of transverse momentum at the lead,
which is centered at zero with width dp� � h̄�aeff �

p
h̄

for the lowest subband. Therefore, only closed orbits with
semiclassically small momentum change Dp contribute to
the width. This in turn implies that the closed orbit is
located semiclassically close (within a distance �

p
h̄) to

a periodic orbit (p.o.) for which Dp � 0. Thus, one can
express the tunneling width in terms of the properties of
these periodic orbits, obtaining [23]

G � Ḡ 1
X

m:p.o.
Am cos

µ
Sm

h̄
1 fm

∂
, (3)

where the monotonic part is

Ḡ �

p
p

2
c2

�aeff
p2

m�
e2z �I0�z � 1 I1�z ��,

z �
p2a2

eff

2h̄2 ,

the amplitude is

Am � 4
p

2
h̄c2

�pm
z

m�
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mij �
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m
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µ
a2

eff

h̄
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, u �
1
2

arctan

µ
m22 2 m11

m21 1 m12

∂
,

ȳ � cosu� ym 2 y���aeff 1 sinupm
y aeff�h̄ , p̄ � cosupm

y aeff�h̄ 2 sinu� ym 2 y���aeff ,
and, finally, the result for the slowly varying phase fm

will be given elsewhere. Here In is the Bessel function
of complex argument, pm is the electron momentum for
the periodic orbit m at the bounce point, ym is the bounce
point coordinate, Sm is the action of the periodic orbit,
and Mm � �mm
ij� is the corresponding monodromy matrix

[12]. The semiclassical approach used here is similar
to the calculation of the tunneling current in a resonant
tunneling diode in a magnetic field developed in Ref. [17]
and described in detail in Ref. [20].
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The equation above is the main result of this paper: it
expresses the modulation of the heights of the Coulomb
blockade peaks by the classical periodic orbits. Note that
the result (3) is valid not only for chaotic but also for
integrable systems (where Tr�M� � 2).

In order to assess the validity of the semiclassical ex-
pression (3), we compare it to numerical calculations for
two simple billiards, one integrable—the circle—and one
chaotic—the stadium. The stadium billiard (Fig. 1, inset)
is one of the canonical examples of a completely chaotic
system [12]. From the dot wave functions (numerically
obtained using the method of Ref. [24]) G can be calcu-
lated from Eq. (2) using the C� given above. To observe
the variation in peak height, we vary the energy, or equiva-
lently the wave vector k � p�h̄, which changes the num-
ber of electrons on the dot as more levels are filled.

In Fig. 1 we show an example of the conductance
through the stadium. The calculation clearly demonstrates
both strong peak-to-peak fluctuations and an oscillatory
modulation of the heights (three periods are observed).

Since the main theoretical result concerns the periodic
modulation of the peak heights, it is natural to consider
the Fourier power spectrum of Gpeak�k�. In Fig. 2 we
present a comparison of the numerical and semiclassical
power spectra, calculated for both integrable (circular) and
chaotic (stadium) dots. The data show that for both the
circle and the stadium the power spectrum has well-defined
peaks corresponding to periodic orbits. More peaks appear
for narrow leads [Fig. 2(a)] because the lack of momentum
constraint in this regime allows coupling to more periodic
orbits. The excellent agreement between the semiclassical
expression and the numerical result in all cases is a striking
demonstration of the validity of our theory.

Similar periodic modulation is expected in the height
of a given peak as a function of magnetic field, with
the frequency of the oscillations proportional to the area
covered by the periodic orbit.

Further characterization of the peak fluctuations is
shown in Fig. 3. The peak-to-peak correlation func-
tion is Corrm�dG, dG� � 
dG�En1m�dG�En��n, where
dG�Em� � G�Em� 2 
G�En��n is a natural measure of
the statistics of nearby peaks. A semiclassical expres-
sion for this quantity can be derived by assuming that
the distribution of individual peak heights is locally
Porter-Thomas, with the mean given by the semiclassical
envelope (3). Indeed, as was first shown by Kaplan
and Heller [15], this is generally true for wave-function
fluctuations in chaotic systems. In Fig. 3(a) we compare
the semiclassical correlation function with numerical data
for the stadium dot. The oscillatory behavior for large
separations reflects the peak in the corresponding power
spectrum in Fig. 2. The positive correlation for nearest
neighbors is also in agreement with the semiclassical
theory, demonstrating the influence of dynamics even in
this apparently non-semiclassical regime.

When T ¿ D, the major source of correlations be-
tween neighboring peaks is the joint contribution of several
2642
FIG. 2 (color). Length spectrum of the oscillations in G�k�
obtained from the Fourier power, numerical (blue) and semi-
classical (red). The power is normalized to the mean con-
ductance which is removed for clarity. (a) Circular dot with
narrow leads, kaeff � 1.2, where aeff is the width of the lead
wave function. (b) Circular dot with wider leads, kaeff � 12.
(c) Stadium dot using data in Fig. 1; dependence of amplitude
at L�R � 4 on kaeff in inset. The width of the peaks reflects
the length of G�k� used; more data was available for the cir-
cle because it is integrable. In (a) the peak at L�R � 4 is the
diameter, that at L�R � 8 is its repetition, those accumulating
to 2p are the whispering gallery trajectories, and the largest
length peak is the star orbit. The magnitude of the oscilla-
tory part compared to the mean depends on the strength of the
coupling to the periodic orbit and so on aeff as well. For the
stadium, (c), the principal peak corresponds to the horizontal
orbit, which appears at L�R � 4 because we use only the wave
functions symmetric about the vertical symmetry axis (equiva-
lent to using a half-stadium). Note the excellent agreement
between the semiclassical theory and the numerical results in
all cases.

resonances to the same conductance peak [9]. However,
for low temperature T # D, the correlations due to tem-
perature are exponentially suppressed. In this regime, the
correlations induced by dynamical modulation dominate,
and they account for the experimentally observed enhance-
ment of correlations at low temperatures [8].

The probability distribution of Gpeak over a large energy
range is the main focus of the previous statistical theories
[2,3]. They predict no peak-to-peak correlation or periodic
modulation of the heights, and a Porter-Thomas distribu-
tion: P�Gpeak� �

q
4�pGpeak exp�2Gpeak�. Considering

an energy range larger than any period in Eq. (3), we find,
in contrast, that the distribution should be locally Porter-
Thomas but with the mean modulated by the periodic
components, as in Ref. [15]. Curiously, the resulting
distribution is not very different from Porter-Thomas:
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FIG. 3 (color). Conductance statistics: (a) peak-to-peak corre-
lation function and (b) probability distribution of G for the
stadium data in Fig. 1. The numerical correlation function
(circles with typical error bars) is in good agreement with
the semiclassical theory (red). The agreement for small m
shows how dynamics can give rise to correlations even between
nearest neighbors. The numerical probability distribution (his-
togram) is for the entire range of data in Fig. 1 and is compared
to both the semiclassical theory (red) and the standard statistical
theory based on random wave functions (blue). Both theories
are consistent with the numerics.

Figure 3(b) shows that the two theories predict nearly the
same result. This explains why no dynamical effect was
observed in the experimental peak-height probability dis-
tribution [5,6].

In contrast, the periodic modulation of the peak heights
has been observed in several recent experiments [6–
8]. The clearest observation is in Ref. [8]: the data in
their Fig. 1 show modulated peak heights as a function
of the number of electrons in the dot. In their trace
of 90 peaks, approximately six oscillations are visible,
yielding a period of �15 peaks. In our treatment, this
period is the ratio of the period of fundamental oscillation
in Eq. (3) to the level spacing D. The fundamental period
is given by � 1

h̄
≠Sm

≠´ �21 � h̄�tm, where tm is the period of
the relevant orbit. To determine tm, we use the billiard
approximation: Lm � yFtm, where Lm is the length of
the shortest orbit and yF is the Fermi velocity. We use
the micrograph of the dot to estimate Lm for the V -shaped
orbit connecting the two leads, and calculate yF from the
experimental density [25]. Using the appropriate spin-
resolved level spacing D � 10 meV (which is half of the
spin-full value from excitation measurements in Ref. [8]),
we find h̄�tmD � 12. Because the billiard approximation
underestimates the period in a soft wall potential, this is a
lower bound for the modulation period, and therefore our
theory is in good agreement with the experiment.

Similarly, we make estimates which are consistent with
the other two experiments showing variation as a function
of the number of electrons [5,6]. This agreement with
experiment may seem surprising, since the adding of
electrons may strongly influence the effective potential
defining the dot. However, experiments on “magneto-
fingerprints” of the peaks [26] suggest robustness of
the effective potential—its change from peak to peak
is small—while to affect the dynamical modulation one
must substantially change the action of the shortest
periodic orbit, which typically requires a much larger
change in potential.
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