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A quantum field theory warm inflation model is presented that solves the horizon and flatness prob-
lems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor
trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly
exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.

PACS numbers: 98.80.Cq, 05.70.Ln, 11.10.Wx
The resolution of the horizon problem, which underlies
inflationary cosmology [1], is that at a very early time,
the equation of state that dictates the expansion rate of
the Universe was dominated by a vacuum energy density
ry , so that a small causally connected patch could grow
to a size that encompasses the comoving volume which
becomes the observed universe today.

In the standard (isentropic) inflationary scenarios, the
radiation energy density rr scales with the inverse fourth
power of the scale factor, becoming quickly negligible.
In such case, a short time reheating period terminates the
inflationary period and initiates the radiation dominated
epoch. On the other hand, the only condition required by
general relativity for inflation is that rr , ry . Inflation
in the presence of non-negligible radiation is characterized
by nonisentropic expansion [2,3] and thermal seeds of
density perturbations [4]. This can be realized in warm
inflation scenarios [5] where there is no reheating.

The basic idea of our implementation of warm inflation
is quite simple; a scalar field, which we call the inflaton,
is coupled to several other fields. As the inflaton relaxes
toward its minimum energy configuration, it will decay
into lighter fields, generating an effective viscosity. That
this indeed happens has been demonstrated in detail in
Refs. [6–8]. If this viscosity is large enough, the inflaton
will reach a slow-roll regime, where its dynamics becomes
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overdamped. This overdamped regime has been analyzed
in Ref. [9]. As one expects, overdamping is most suc-
cessful for the case where the inflaton is coupled to a large
number of fields which are thermally excited, i.e., which
have small masses compared to the ambient temperature
of radiation. This result has important consequences for
cosmological applications.

In order to satisfy one of the requirements of a suc-
cessful inflation (60 or so e-folds), overdamping must be
very efficient. Our goal in this Letter is to show that it
is possible to build a toy model, motivated from high en-
ergy particle physics, that can provide enough overdamp-
ing as to produce a viable inflationary expansion, which
smoothly exits into a radiation dominated regime, with
rr slowly and monotonically decreasing throughout the
whole process. In contrast to most models in the litera-
ture, warm inflation provides both a natural context for
the slow-roll regime and for its graceful termination into
a radiation dominated era.

The particle physics model considered below is inspired
by string theories exhibiting N � 1 global supersymme-
try, with the inflaton coupled to massive modes of the
string, as recently discussed in Ref. [10]. We refer the
reader to this reference for details.

We thus consider the following Lagrangian of a scalar
field f interacting with NM 3 Nx scalar fields xjk and
NM 3 Nc fermion fields cjk ,
L �f, xjk , cjk , cjk� �
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where all coupling constants are positive: l, fjk , g2
jk ,

hjk . 0. For simplicity, we consider in the following
fjk � f, gjk � hjk � g. Also, we will set Nc � Nx�4,
which along with our choice of coupling implies a can-
cellation of radiatively generated vacuum energy correc-
tions in the effective potential [11]. We call this kind of
model a distributed mass (DM) model, where the interac-
tion between f with the xjk and cjk fields establishes a
mass scale distribution for the xjk and cjk fields, which
is determined by the mass parameters �M�. Thus the xjk

and cjk effective field dependent masses, mxjk �f, T , �M��
and mcjk �f, T , �M��, respectively, can be constrained even
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when �f	 � w is large. A specific choice of �M� will
be given shortly. The fx, fc interactions can be made
reflection symmetric, f ! 2f, but for our purposes we
will consider all Mj . 0 and f . 0.

The one-loop effective equation of motion for the scalar
field f is obtained by setting f � w 1 h in Eq. (1)
and imposing �h	 � 0. Then from Weinberg’s tadpole
method [9,12,13] the one-loop evolution equation for w is

ẅ 1 3H �w 1 m2w 1
l
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l

2
w�h2	1
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NMX
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�w 2 Mi� �x2
ij	 1 g
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j

�cijc ij	 � 0 . (2)

In the above, the term 3H �w describes the energy redshift
of w due to the expansion of the Universe. In the warm
inflation regime of interest here, the characteristic time
scales (given by the inverse of the decay width) for the
fields in Eq. (1) are faster than the expansion time scale,
1�H. In this case, the calculation of the (renormalized)
thermal averages in Eq. (2) can be approximated just as
in the Minkowski spacetime case.

A systematic evaluation of the averages in the adiabatic,
strong dissipative regime was presented in [9] and re-
derived in [14] with extension to fermions. The essential
mechanism for dissipation obtained from this approach
can be explained through an intuitive kinetic theory argu-
ment first given in [7] and reexamined in [14]. (We note
that the objections to warm inflation raised in Ref. [14]
are avoided quite naturally by coupling the inflaton to a
tower of mass modes as in the present implementation
of the DM model.) For the x-field averages one writes
�x2

ij	 �
R

�d3k��2p�3�nxij �k��vxij �k�, where the number
densities n�k� in the strong dissipative regime, in near
equilibrium, can be written in the relaxation time approxi-
mation to the kinetic equation as [7,15]

n�k� 
 neq�k� 2 t �neq�k� . (3)

Here neq�k� � 1��ebv�k� 2 1� is the equilibrium number
density for x particles, v�k� �

p
k2 1 m2�w, T , �M��,

m2�w, T , �M�� is the effective, field dependent mass for
the x fields [9], and t � G21, where G is the decay
width for the x particles. From Eq. (3) the second term
on the right is proportional to �w, which in Eq. (2) leads
to dissipative effects on w from its interaction with the x

fields. Analogous expressions also apply to the fermionic
averages (for Fermi-Dirac statistics) in Eq. (2).

Based on a systematic perturbative approach, as we have
shown in previous work [6,9], we can write Eq. (2), using
the expressions for the associated averages for the xij , c

and h fields, and Eq. (3), as

ẅ 1 3H �w 1 V 0
eff�w, T � 1 h�w� �w � 0 , (4)

where V 0
eff�w, T � � ≠Veff�w, T ��≠w, is the field deriva-

tive of the one-loop finite temperature effective potential,
which can be computed by the standard methods (in fact,
this is the resummed effective potential, with masses writ-
ten in terms of the finite temperature effective masses) and
h�w� � hB�w� 1 hF�w� is a field dependent dissipation,
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(6)
In what follows, we will be interested in the regime where
h�w� ¿ 3H in Eq. (4). As discussed in [7,9,14], Eq. (4)
is valid provided the adiabatic regime for w is satisfied,
i.e., the dynamic time scale for w must be much larger
than the typical collision time scale �
G21�, or jw� �wj ¿
G21, where G is the smallest of the thermal decay widths
Gf, Gxij , Gcij , as it will set the largest time scale for
collisions for the system in interaction with the bath.

Note that the damping coefficient depends on w2 or
�w 2 Mi�2. To obtain enough inflation, the amplitude of
the inflaton should decrease very slowly, which requires
efficient overdamping. This overdamping is guaranteed
by having a succession of fields always thermalized, so
that the population of decay products is not depleted by
the expansion. This condition is satisfied through our
choice of Lagrangian for the DM model, which naturally
guarantees that a population of decay products will be
generating efficient damping as w slowly rolls down.
We construct a warm inflation scenario based on
the following DM model. For definiteness, we will
refer all dimensional quantities to TBI , the tempera-
ture of the universe at the beginning of warm inflation.
The crucial property of the DM model of Eq. (1) is that
for a given temperature T , only the fields with masses
g2�w 2 Mi�2 & T2 will contribute to the thermal viscos-
ity; the effect of heavier fields can be neglected. Thus,
as the inflaton rolls down its potential, we must only
consider the subset of fields for values of i which satisfy
the above inequality. Note that with this choice of model,
if w ¿ TBI , which is needed for efficient inflation, it
is still possible to have many light xij �cij� fields if
w 
 Mi . This will guarantee an efficient viscosity term
in the equation for w.

For convenience, we write the mass parame-
ters as Mi � �i 1 imin�m max

xc TBI�g, i � 1, . . . , NM ,
with m max

xc a dimensionless constant of O �1� and
Mi�0 � iminm

max
xc TBI�g the lowest mass level cou-

pled to w. For such a model, at T 
 TBI and
Mi11 . w . Mi , there will be a range of masses
when 2.5Nx 1 1 xij , cij , xi11, j , ci11, j , and h fields
265
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are thermally excited. All other xi0j�ci0j� fields, for
i0 fi i, i 1 1, and j � 1, . . . , Nx �Nx�4�, have masses
m2

xc � g2�w 2 Mi0�2 . �m max
xc TBI �2 
 T2 and are thus

cold [actually thermal excitation begins once mxc � 10T
and nontrivial dissipation once mxc � �2 3�T ].

For the h 2 x 2 c system participating in the dissipa-
tive dynamics of w, in each interval Mi11 . w . Mi , the
radiation energy density is �2Nx 1 7Nc 1 1�p2T4�30.
In addition to these fields, in general there can be
a set of “heat bath” fields that increase the particle
degrees in the radiation system, but do not otherwise con-
tribute to dissipation. For later use, we adopt the fol-
lowing notation for the number of these heat bath fields,
2�15Nx�8 1 1�11a 2 �15Nx�4 1 1�, so that, in total,
the radiation system has g� � 2�15Nx�8 1 1�11a effec-
tive particle degrees for any interval where w is. a $ 0
is a free parameter.

To simplify the calculation to follow, we consider
the region where w ¿ T and the lw3�6 term dom-
inates the equation of motion. From V 0

eff�w, T � the
leading x , c field contribution for Mi11 . w . Mi is
�NxT2

BI�8�g2��w 2 Mi� 1 �w 2 Mi11�� , O �gNxT3�,
so that the constraint requires lw3 ¿ O �gNxT3�.
In the perturbative regime that we examine, l ø 1,
so that m2

f�w, T � � lw3�2 � m 2
f�f, T �T2

BI , since
w ¿ T . The x�c� masses will range from f2T2�12
�g2T 2�6� , m2

x �m2
c � , f2T2�12 �g2T2�6� 1 g2�w 2

Mi�2 & O �T2
BI �. As a simplification, the x , c

masses will be estimated at their largest value
�mmax

xc �2 � �m max
xc TBI �2 � g2�w 2 Mi�2jmax � O �T2

BI �.
We can then express the condition that the lw3�6 term
dominates the equation of motion (4), in terms of

Rxc�w # 3gNxmmax
xc T2

BI�4lw3
BI , 1 , (7)

where, Rxc�w � 3g2Nx T 2
BI ��w2Mi�1�w2Mi11��max

4lw
3
BI

.
To impose the most stringent constraint from this,

it will be taken at the maximum value mmax
xc from

Eq. (7). In fact, considereable increase in dissipation,
thus improvement in the results to follow, occurs by
accounting for corrections when the x’s (c’s) are in the
smaller mass region. In the regime outlined above, the
effective equation of motion for w, Eq. (4), in the interval
Mi11 . w . Mi and in the overdamped limit is

hi, i11�w� �w  2l�6w3, (8)

where hi, i11�w� � h
B
1 ��w 2 Mi�2 1 �w 2 Mi11�2� 1

h
F
1 T2 where h

B
1 and h

F
1 (from [9] and [14]) are given

by h
B
1 
 384Nxg4��pT � f2 1 8g4�� ln�2T�mx� and

h
F
1 
 11Nc�T , respectively.
As w moves through the interval Mi11 . w . Mi ,

hi, i11�w� � k�1 1 rFB�hB
1 �m max

xc TBI �2�g2, (9)

with rFB � h
F
1 T2

BIg2��hB
1 k�m max

xc TBI �2� � 0.2, where the
estimate on the right is from [9,14] for the high tempera-
ture limit and 0.5 , k , 1. Since we are examining the
region w ¿ T , we can ignore the weak w dependence in
hi, i11. In this case, the solution to Eq. (8) is
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w�t� � wBI ��t 1 t0��W4 1 1�21�2, (10)
with W4 � 3HBIkh

B
1 �m max

xc TBI �2�1 1 rFB���g2lw
2
BI�

and HBI �
p

2plw4
BI��9m2

p�. Time has been rescaled
as t � t�HBI with the origin chosen such that
w�t � 0� � wBI , which implies t0 � 0.

The resulting warm inflation cosmology for such a field
trajectory in any interval Mi11 . w . Mi is equivalent to
the n � 4 model in [3]. It yields a power-law warm in-
flation which never terminates and for which in the steady
state regime rr �t��ry�t� � const. In our model, warm in-
flation terminates into a radiation dominated regime once
w , Mi�0, since below that point the dissipative term be-
comes negligible, in which case w coasts down the poten-
tial. The essential point of interest here is to show that
once w reaches M0, sufficient e-folds Ne have occurred
while the universe has non-negligible radiation.

For simplicity, the steady state cosmology in flat spatial
geometry will be examined, which implies from [3],
for W4 ¿ 1, rr �0��ry�0� � rr �t��ry�t� � 1��2W4�.
[From Eq. (10), we can show that this is the necessary con-
dition to satisfy the adiabatic condition, jw� �wj ¿ G21 and
Gf�x� . H.] In terms of the parameters of the model this
can be written as g�p2T4

BI�30 � lw
4
BI��48W4�. Initial

conditions that are more realistic, such as rr �0� . ry�0�
rapidly evolve into the steady state behavior. In this
steady state regime, the scale factor solution is [3]

R�t� � �t�W4 1 1�W41
1

4 , (11)
with initialization R�0� � 1.

Our goal is to compute W4 from the microscopic param-
eters of the model and consistent with the many constraints
given above and in section V of [9]. The power-law ex-
pansion behavior of the scale factor, Eq. (11), is such
that the major factor of growth happens for t�W4 , 10.
Ne � W4 e-folds occur at time t�W4 � e 2 1. We will
restrict our calculation within this time interval. At the end
of this interval w�t�, Eq. (10), and T have not changed sig-
nificantly, wBI ! wBI�

p
e, TBI ! TBI�

p
e. This simpli-

fies the constraint equations, since they can be analyzed at
the initial values wBI , TBI and approximately will be valid
throughout this interval.

The constraint equations for computing W4 are
as follows. To satisfy the thermalization conditions
Gx , Gf, Gc . H, we will set HBI � min�Gx , Gf, Gc�.
More explicitly, for the warm inflation solutions studied
below, Gx (which is the smallest of the G’s) is larger
than HBI for f * 0.8. This condition may be under
restrictive to obtain good thermalization, but it provides
the maximum parameter region that may be useful. It
should be noted that since H 
 w2 and G 
 T , as
warm inflation proceeds, thermalization improves. The
thermalization condition automatically implies that the
adiabatic condition is comfortably satisfied.

All the constraints are expressed in the following four
relations:

R2
xc�w �

15g4N2
x � 15Nx

8 1 1�2�11a�

256p2k�min�Gf, Gx ��hB
1 �1 1 rFB�

, (12)
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W4 �
45�gNxm max

xc �2

512p2m 2
fBI

R2
xc�w� 15Nx

8 1 1�11a
, (13)

Rxc�wwBI�TBI � 3gNxm max
xc ��8m 2

fBI
� , (14)

and
lR22

xc�w � 128m 6
fBI

�3gNxm max
xc �22. (15)

Equation (12) is obtained from the relation for W4 below
Eq. (10), where h�w� in Eq. (9) has been expressed in
terms of Rxf, Eq. (7). The procedure is to input g,
f, m max

xc , mfBI , Nx on the right-hand side of the above
four equations, then obtain the left-hand side of Eqs. (12)
and (14) from which the remaining two equations follow,
up to a choice for Rxc�w , 1. Note that the only
cases requiring additional heat bath fields �a . 0� are in
parametric regimes when the right-hand side of Eq. (12)
is greater than 1, since we require Rxc�w , 1.

In [9] analytic expressions were obtained for G�q� and
h1 in the simplified limit jqj � 0, mx , mc 
 O �mf�
(which here we call level 1) as well as in terms of the
exact two-loop expressions, which must be computed nu-
merically (level 2). The results in Fig. 1 present both lev-
els of approximation. We used g � f � 0.9, k � 0.5,
Nx � 12, Nc � Nx�4 � 3, and Rxc�w & 1 �a * 0�.
The solid and dashed curves are for m max

xc � 0.9, for level 1
and level 2, respectively, and the dotted curve is level 2
for m max

xc � 2.5. For both curves drawn in Fig. 1, go-
ing from mfBI � 0.002 to 0.05, the initial field displace-
ment wBI�TBI ranges as 106–103, NM ranges as 105–102,
and l ranges as 
10217 –1029. In the regime we are
considering, imin 
 wBI��gTBI � and for the above results,
imin ranges from 102–106. To obtain Ne 
 60 e-folds
of warm inflation for all three cases, wBI�TBI � 3000,
NM � 1000, and l � 1029. An absolute scale is fixed
by setting mp � 1019 GeV from which for Ne 
 60 e-
folds, we find TBI 
 �1013 1014� GeV and HBI 
 �109

1010� GeV. [The temperature at the onset of warm infla-
tion, ry � rr , is �2W4�1�4 
 3.3 times bigger than TBI ,
and rapidly decreases to TBI during the transient period.]

The DM model studied here was motivated by the
requirements of warm inflation, dissipative dynamics, and
perturbative renormalizability. We can justify our choice
of Lagrangian by noting that string-inspired models can
display an inflaton coupled to mass modes of a string,
as explained in Ref. [10]. Within this context, the large
number of fields necessary to realize sufficient inflation
is a natural consequence of the modifications of short-
distance physics required by string theories.

In summary, first principles quantum field interactions
can realize a warm inflation regime with sufficient du-
ration to solve the horizon and flatness problems. The
interplay between inflationary expansion and radiation
production has been a persistent problem since the earliest
history of inflationary cosmology. Thus, despite the many
questions opened by our model, its underlying mechanism
is a unique and simple resolution to the problem. Further
FIG. 1. Number of e-folds of warm inflation Ne versus mfBI

for m max
xc � 0.9 level 1 (solid line), 0.9 level 2 (dashed line),

and 2.5 level 2 (dotted line) with g � f � 0.9, k � 0.5,
Nx � 12, and Nc � Nx�4 � 3.

study of the inflaton k modes is necessary to address the
density fluctuation problem.

We thank A. Linde and J. Yokoyama for their interest.
A. B. was supported by the U.S. Department of Energy.
M. G. was partially supported by the NSF through a
Presidential Faculty Fellows Award No. PHY-9453431
and by a NASA Grant No. NAG5-6613. R. O. R. was
partially supported by CNPq and FAPERJ.

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981); A. Albrecht
and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982); A.
Linde, Phys. Lett. 108B, 389 (1982). For more references,
see K. A. Olive, Phys. Rep. 190, 307 (1990).

[2] H. P. de Oliveira and R. O. Ramos, Phys. Rev. D 57,
741 (1998); E. Gunzig, R. Maartens, and A. V. Nesteruk,
Classical Quantum Gravity 15, 923 (1998).

[3] A. Berera, Phys. Rev. D 55, 3346 (1997).
[4] A. Berera and L. Z. Fang, Phys. Rev. Lett. 74, 1912

(1995).
[5] A. Berera, Phys. Rev. Lett. 75, 3218 (1995); Phys. Rev. D

54, 2519 (1996).
[6] M. Gleiser and R. O. Ramos, Phys. Rev. D 50, 2441

(1994).
[7] A. Hosoya and M. Sakagami, Phys. Rev. D 29, 2228

(1984).
[8] M. Morikawa, Phys. Rev. D 33, 3607 (1986).
[9] A. Berera, M. Gleiser, and R. O. Ramos, Phys. Rev. D 58,

123508 (1998).
[10] A. Berera and T. W. Kephart, Phys. Lett. B 456, 135

(1999).
[11] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[12] G. Semenoff and N. Weiss, Phys. Rev. D 31, 699 (1985).
[13] D. Boyanovsky et al., Phys. Rev. D 51, 4419 (1995).
[14] J. Yokoyama and A. Linde, hep-ph/9809409.
[15] M. Morikawa and M. Sasaki, Phys. Lett. 165B, 59 (1985).
267


