VOLUME 83, NUMBER 13 PHYSICAL REVIEW LETTERS 27 BPTEMBER1999

L ocal Density Approximation for Superconductors

S. Kurth! M. Marques? M. Luders; and E. K. U. Gross
'Department of Physics, Tulane University, New Orleans, Louisiana 70118
2Ingtitut fiir Theoretische Physik, Universitat Wiirzourg, Am Hubland, D-97074 Wiirzburg, Germany
3Daresbury Laboratory, Warrington, WA4 4AD, United Kingdom
(Received 29 October 1998; revised manuscript received 14 July) 1999

A universal LDA-type density functional describing the electronic correlations in superconductors is
developed from first principles. The functional is constructed from the exchange-correlation free-energy
density, fiom | of a homogeneous electron gas exposed to an external translationally invariant pairing

field. The quantityf°m, which is a function of the density and a functional of the induced order

XC 4

parameter, is calculated by many-body perturbation theory.

PACS numbers: 71.15.Mb, 71.45.Gm, 74.25.Jb

Density functional theory (DFT) [1] is a powerful tool , S8 Fxeln, x]
in electronic-structure calculations of atoms, molecules, Axeln, x1(r,x') = _W' (6)
and solids. Conventional DFT, however, is not able
to describe the superconducting phase of matter. In The first numerical solution of these KS equations was
1988, triggered by the discovery of the high-temperaturé@chieved in 1993 for niobium [3]. Recently, the first
superconductors, Oliveira, Gross, and Kohn [2] developeattempts to tackle the high- superconductors within the
the formal framework of a DFT for superconductors. Inabove DFT framework have appeared [4,5]. In this work,
this formalism the exchange-correlation (xc) energy is dhe xc functional was modeled by a phenomenological
functional of two quantities, the ordinary densin(r) =  interaction kernel which was expanded in the linear muffin-
> (&1 (r)i,(r)), and the superconducting order parame-in orbitals of a recently proposed eight-band model for
ter x(r,r’') = (J4(r)iy(r')). The corresponding Kohn- YBCO[6,7]. The comparison of various scenarios pointed
Sham (KS) equations have the form of the Bogoliubov-to the conclusion that the pairing mechanism operates

de Gennes equations (atomic units are used throughout)between electrons of opposite spins on nearest-neighbor
Cu sites.

V2 NG . . .
<—? + vy(r) — ,u)uk(r) + fd3r'As(r,r') v (r') While it is certainly fruitful to study the xc potential
of a particular system, the charm and the power of DFT
= Erui(r), (1) derives from theuniversality of the xc functional: One

v and the same functional of and y should predict the
_<_7 + v,(r) — ,u>vk(r) + fd3r/Af(r,r/) i (r') specific properties obll materials. The present Letter
2 ! represents the first attempt to construct such a universal
= Eu(r), (2)  functional for superconductors. The proposed functional
can be viewed as the superconducting analog of the lo-
where u is the chemical potential of the superconductor,cal spin-density approximation (LSDA). To explain the
and the effective electrostatic and pairing potentialér)  nature of our construction we first take a step back and

andA(r,r’), are given by briefly review the basic idea behind the LSDA as it is
5, n(') commonly used in the calculation of magnetic proper-
vsln, xJ(r) = wo(r) + [ d’r Ir—1r| ties: To construct the LSDA, the homogeneous electron

gas is exposed to a constant magnetic fieldz(idirec-

+ vie[n, x](r), ) tion) which produces a finite spin polarizatiom. The

corresponding xc energy per unit volume then becomes

!/
Ag[n, x]1(r,r') = Ao(r,r’) + Lr/) a function e (n, m) of the densityn and the spin po-
e —r'| larization m. Once this function is known, the LSDA
+ Ageln, x1(r,x'). (4) functional for inhomogeneous systems with density)

L i i LSDA 7
vo represents the Coulomb potential of the lattice anaa r;%rrzkignrzit(li)a :?(rrn;)(r) Itlsisdviglrllekdnot\)/?//rf ?Flat Eﬁi’smgunc-

. iy : 2o , .
Ao IS an external palrlng'potentlal produced, e.g., by th ional provides a rather successful description of magnetic
proximity effect of an adjacent superconductor. The xc

. ) . L roperties. The functional itself is universal, i.e., its de-
g?:ﬁztgsfrggeefﬁégilI}}L:;‘;gfg a[i f;?.cnonal OlerlV‘Fit'vesgendence om andm is the same for all systems. The
- - XC ) .

fact that the homogeneous electron gas (without external
8 Fxc[n, x] magnetic fields) becomes spin polarized only at unphysi-
én(r) cally low densities is not relevant. What is used in the

vxeln, x1(r) = ()
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LSDA is the function e"°™(n, m) produced by finite exter-
nal magnetic fields.

We apply the same philosophy to superconductors: The
homogeneous electron gas is exposed to an external pair-
ing field Ay which induces a finite order parameter y.
Consequently, the xc energy depends on the density n and
on y. To preserve trangdlational invariance, the externa
pairing field Ay(r,r’) is chosen to depend on (r — r')
only, so that its Fourier transform is given by Ay(k) =
[d3(r — r")e™®T T Ay(r,r'). Asa consequence, the in-
duced order parameter x(r,r’) is trandationally invariant
as well; its Fourier transform will be denoted by y (k).
Considering a homogeneous superconductor at finite tem-
perature, we have to determine the xc free energy per unit
volume, fPm[n, y(k)], which is a function of the (con-
stant) density » and a functional of y(k). In analogy to
the LSDA functional discussed above, we then define the
LDA for superconductors by

FEPNR), o (R10] = [ @R 72270, ] ,

n=n(R)
X=xw (RK)

)
where yw (R, K) is the Wigner transform

xw(R, k) = f d3seiks/\/<R - %,R - %) (8)
of the anomalous density x(r,r’) of the inhomogeneous
systems to be treated. It is obvious that this definition
correctly reduces to the LDA of nonsuperconducting sys-
tems in the limit y — 0. At first sight, other definitions
of an LDA for superconductors with the correct nonsuper-
conducting limit might be conceivable. However, a sys-
tematic gradient expansion of the total-energy functional
shows that Eq. (7) isin fact the only correct LDA for su-
perconductors. This follows from a diagrammatic expan-
sion of the total energy of the inhomogeneous system in
terms of the normal and anomalous Green’s functions and
the particle-particle interaction. A subsequent 7 expan-
sion of the Green’s functions [8] resultsin a semiclassica
expansion of the total energy. From this expansion one
readily concludes [9] that the lowest order termsin 7 are
identical with the LDA, leading to Eq. (7).

The LDA requires f°™ asan input. To determine this
functional we have to calculate the free energy associated
with the Hamiltonian & = Hy + U, where

f?om[,uvs, As] = -

4 ) Q)3 Qn)3 Ry

3 31 _
1 d’k  d°k [l_sk Mstanh<£Rk>:|| 447

I:IO = ZZ(kz/z - IU/O)élta'ékO'
o k
— > [Aj(K)exge—k + Hel (9)
K

describes a noninteracting gas exposed to the externa
pairing field Ag(k). po is a shorthand for the constant
(u — vp) and U represents the bare Coulomb interaction

33 [ar [ariimiben

2 o0’ |I‘ - rll

X lza'(l")lfﬂa(l‘)- (10)
In standard many-body perturbation theory one would

take H, as the unperturbed Hamiltonian and U as the

perturbation. For reasons explained below we choose, for
our diagrammatic analysis, the Kohn-Sham Hamiltonian

I:Is = Z Z(kz/z - ,U/x)élo'éka'
o Kk

U

— > [Al(K)ewe—k + Hel, (11)
k

as the “unperturbed” Hamiltonian. w, is a shorthand
for the constant (u — vy) and A;(k) is the KS pairing
potential (4) of a homogeneous system. The full Hamil-
tonian can then be written as # = H, + H, with the per-
turbation 4, = U — H, + H,. Because of the presence
of the pairing field A (k) in the unperturbed Hamilton-
ian H,, the diagrammatic analysis not only involves the
normal KS Green’s function G, but also the anomalous
KS propagators F, and F!. The latter are represented
by lines with arrows pointing in opposite directions. The
three diagrams contributing to the free energy to first or-
der in A, are shown in Fig. 1. However, only the third
diagram, Fig. 1c, contributes to the xc free energy Fiy..
Figure 1a corresponds to the classical electrostatic energy
of the charge distribution. This energy contribution is
not approximated within the LDA but rather treated ex-
actly, leading to the Hartree potential in Eq. (3). Like-
wise, the “anomalous Hartree energy” depicted in Fig. 1b
isnot included in F.. Thisterm leads to the anomalous
Hartree potential, the second term on the right-hand side
of Eq. (4). The only contribution to the xc free energy
per unit volume in first order is the exchange diagram of
Fig. 1cyielding

[1 S —_—— tanh(% Rk/ﬂ,

k — k/|2 Ry
(12)

2

where Ry = /(ex — us)? + |Ay(k)]2 and g = k?/2. | with terms in the free energy of the unperturbed system

The wiggly lines in Figs. la—1c represent the bare
Coulomb interaction U. The first-order contributions
resulting from the one-body operators in H; cancel

described by the Hamiltonian 4.
In second order, as in the normal electron gas, some of
the diagrams are divergent due to the long range of the
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Coulomb interaction. To abtain a finite result a partial
resummation of an infinite subset of diagrams needs to be
performed. The simplest resummation of this kind is the

the most divergent terms in every order. The RPA for
superconductors includes al the normal and anomalous
bubble diagrams as indicated in Fig. 2. The resummation

random phase approximation (RPA) [10], which includes | leadsto

FEPA s, AT =

52| o )3||og[1 - Hs<q,vn>‘;—’§} . Hs<q,vn>‘;—f} (13

with the even MaIsubarafrequencies v, = 2nw/B. Il istheirreducible KS polarization given by

q’ Vn)

with the odd Matsubara frequencies w,,

Equations (12) and (13) represent the xc free energy
as a functional fMom[u,, As(k)] of the potentials u, and
A;(k) appearing in the KS Hamiltonian (11). The DFT
for superconductors, however, requires the xc energy as
a functional of the densities {n, y(k)}. By virtue of the
Hohenberg-Kohn theorem for superconductors [2], ap-
plied to the noninteracting case, the potentials { .y, Ay (k)}
and the densities {n, y (k)} are in 1-1 correspondence, i.e.,
s and A (k) can be written as functionals of n and y (k),

Ayln, x(K)] ().,
(15)

so that the desired density functional fom[n, y(k)] is
obtained from

foomn, x (k)] = Foo™[usln, x (K)], Ayln, x (K)]].
(16)

The functionals (15) corresponding to noninteracting sys-
tems can be constructed explicitly by inverting the well-
known relations

(;Z:;[l - Sk;k“‘ tanh('8 Rkﬂ (17)

LA g

x(k) = > Ry 53 Rk> . (18)

Given some densities {71, y(k)}, the corresponding poten-
tials i1, = pyl, Y(k)] and A = A[#, ¥ (k)] are deter-
mined by the following steps. (a) for fixed B, Eq. (18) is
inverted, leading to A (k) = D(u,, ¥ (k)). At zero tem-
perature, the inverse function D is easily constructed ana-
lytically, while at finite temperature, D hasto be evaluated
numericaly from Eq. (18). (b) Insert the result of step
(® in Eq. (17), yielding the density as a function n(uy).
(c) Find fay suchthat 7 = n(ag). (d) Insert this i in the

OO & &

a

s = pgln, x(K)], As(q) =

n =

FIG. 1. First order diagrams contributing to the free energy.
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Z[ 2y {Gy(k, 0,)Gs(k + q, @, + v,) + Fy(k,w,)FI(k + q, 0, + v,)} (14)

= @n + /. |

inverse function D to get A;(k) = D(@,, y(k)). With
this procedure we have explicitly constructed the func-
tionals (15) and thereby the desired density functional
(16) for the xc energy. Had we chosen A, as unper-
turbed Hamiltonian and U as the perturbation, the dia
grammatic analysis would have given the xc free energy

as a functional f:im[,u,o, Ao(k)] of the external potentials
o and Ag(k). By virtue of the Hohenberg-Kohn theo-
rem for superconductors [2], the latter can, in principle, be
eliminated in favor of the densities {n, y (k)}. In practice,
however, the required interacting functionals woln, x (k)]
and Ao[n, y(k)] are not known while the noninteracting
KS relations (15) can be constructed explicitly as shown
above. For this reason we performed the RPA resumma:
tion in terms of the KS propagators.

To gain some insight in the relative importance of the
anomalous Hartree, the exchange, and the correlation con-
tributions we have evaluated these energies for the simple
model pair potential A(k) = 6 exp(— (k= kF) ), where kr
is the Fermi wave vector and & and o are parameters In
Fig 3 we show the difference of exchange energies, 3 —
N, in the superconducting (S) and normal conducting
(N) states, the negative difference, —(fRPAS — fRPAN)
of the corresponding RPA correlation energies, and the
anomalous Hartree energy, fau. The plotted values
are the energy densities corresponding to zero tempera
ture and r, = 1. Their dependence on the parameters 6
and o turns out to be rather smooth. The exchange part
is positive and roughly 1 order of magnitude smaller than
the other two terms. The anomalous Hartree term gives
rise to a large positive contribution. The RPA correla-
tion energy difference (fRPAS — fRPAN) on the other
hand, leads to a large negative contribution which nearly
cancels the positive Hartree term; the sum of the three
terms is positive everywhere. The same statement holds

R

FIG. 2. The RPA diagrams.
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true for r, = 0.1, 1, 2, 3, 4, and 5. In the conventional
s-wave superconductors these Coulombic positive-energy
contributions are overcome by negative contributions due
to the electron-phonon coupling. We emphasize that for
the prediction of material-specific properties, suchas T, it
is indispensible, even for the conventional s-wave super-
conductors, to treat both the electronic correlations and the
electron-phonon coupling from first principles. While the
former are taken care of by the proposed LDA functional,
the latter can be accounted for by an appropriate “exter-
nal” pairing field Ay in Eq. (4). In the weak-coupling
regime, A iswell represented by the ordinary mean-field
potential associated with the Bardeen-Pines [11] interac-
tion. Strong electron-phonon coupling can also be treated
within the DFT for superconductors. This, however, is a
separate matter which will be discussed elsewhere [12].
In this work we have constructed an LDA-type func-
tional to be employed in the description of real (in
particular, inhomogeneous) materials. The functiona is
obtained from the xc free energy of a homogeneous el ec-
tron gas exposed to an external pairing field. Although
it is not the main purpose of this Letter, we finaly ad-
dress the question whether the homogeneous electron gas
itself, i.e., without external pairing field, has a supercon-
ducting phase. This is a completely different and rather
subtle issue. It should be remembered that the LSDA as
it is commonly applied in ordinary DFT is not able to
describe redlistically the spin-polarized phases of the ho-
mogeneous electron gas without external magnetic field.
These phases have been reliably calculated only very re-
cently [13]. The question whether the electron gas has
a superconducting phase has been discussed in a number
of publications: In aclassical paper, Kohn and Luttinger
[14] predicted a superconducting phase at very low T.
with an order parameter of high angular momentum. A
different mechanism, due to plasmon exchange, was sug-
gested later by Takada [15]. Sham and co-workers [16]
solved the Eliashberg equations with an RPA-screened in-
teraction and found superconductivity at unrealistically
high critical temperature. The inclusion of vertex and
other corrections [17] lowers T, considerably. To investi-
gate this issue within the present DFT context, we have to
solve the KS equations (1) and (2) for a homogeneous sys-

tem with vanishing external pairing field. Clearly, in the
case of a uniform gas, the solutions for the particle and
hole amplitudes are plane waves. The self-consistency
condition (4) for the KS pairing potential is equivalent to
agap equation that contains both mean-field (Hartree) and
xc contributions. We found that this gap eguation has no
nonvanishing solutions with s-wave symmetry. Whether
or not the proposed RPA functional allows solutions of
the gap equation with higher angular momentum remains
to be investigated. Work along these linesisin progress.
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