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Local Density Approximation for Superconductors
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A universal LDA-type density functional describing the electronic correlations in superconduct
developed from first principles. The functional is constructed from the exchange-correlation free-e
density,fhom

xc , of a homogeneous electron gas exposed to an external translationally invariant p
field. The quantityfhom

xc , which is a function of the density and a functional of the induced or
parameter, is calculated by many-body perturbation theory.
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Density functional theory (DFT) [1] is a powerful tool
in electronic-structure calculations of atoms, molecule
and solids. Conventional DFT, however, is not abl
to describe the superconducting phase of matter.
1988, triggered by the discovery of the high-temperatu
superconductors, Oliveira, Gross, and Kohn [2] develope
the formal framework of a DFT for superconductors. In
this formalism the exchange-correlation (xc) energy is
functional of two quantities, the ordinary density,n�r� �P

s�ĉy
s�r�ĉs�r��, and the superconducting order parame

ter x�r, r0� � �ĉ"�r�ĉ#�r0��. The corresponding Kohn-
Sham (KS) equations have the form of the Bogoliubov
de Gennes equations (atomic units are used throughoutµ
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2
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� Ekuk�r� , (1)
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wherem is the chemical potential of the superconducto
and the effective electrostatic and pairing potentials,ys�r�
andDs�r, r0�, are given by

ys�n, x� �r� � y0�r� 1
Z

d3r 0
n�r0�

jr 2 r0j

1 yxc�n, x� �r� , (3)

Ds�n, x� �r, r0� � D0�r, r0� 1
x�r, r0�
jr 2 r0j

1 Dxc�n, x� �r, r0� . (4)

y0 represents the Coulomb potential of the lattice an
D0 is an external pairing potential produced, e.g., by th
proximity effect of an adjacent superconductor. The x
potentials are formally defined as functional derivative
of the xc-free-energy functionalFxc�n, x�:

yxc�n, x� �r� �
dFxc�n,x�

dn�r�
, (5)
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Dxc�n, x� �r, r0� � 2
dFxc�n,x�
dx��r, r0�

. (6)

The first numerical solution of these KS equations w
achieved in 1993 for niobium [3]. Recently, the firs
attempts to tackle the high-Tc superconductors within the
above DFT framework have appeared [4,5]. In this wo
the xc functional was modeled by a phenomenologi
interaction kernel which was expanded in the linear muffi
tin orbitals of a recently proposed eight-band model
YBCO [6,7]. The comparison of various scenarios point
to the conclusion that the pairing mechanism opera
between electrons of opposite spins on nearest-neigh
Cu sites.

While it is certainly fruitful to study the xc potentia
of a particular system, the charm and the power of D
derives from theuniversality of the xc functional: One
and the same functional ofn and x should predict the
specific properties ofall materials. The present Lette
represents the first attempt to construct such a unive
functional for superconductors. The proposed functio
can be viewed as the superconducting analog of the
cal spin-density approximation (LSDA). To explain th
nature of our construction we first take a step back a
briefly review the basic idea behind the LSDA as it
commonly used in the calculation of magnetic prope
ties: To construct the LSDA, the homogeneous elect
gas is exposed to a constant magnetic field (inz direc-
tion) which produces a finite spin polarizationm. The
corresponding xc energy per unit volume then becom
a functionehom

xc �n, m� of the densityn and the spin po-
larization m. Once this function is known, the LSDA
functional for inhomogeneous systems with densityn�r�
and magnetizationm�r� is defined byELSDA

xc �n, m� �R
d3r ehom

xc ���n�r�, m�r����. It is well known that this func-
tional provides a rather successful description of magne
properties. The functional itself is universal, i.e., its d
pendence onn and m is the same for all systems. Th
fact that the homogeneous electron gas (without exte
magnetic fields) becomes spin polarized only at unphy
cally low densities is not relevant. What is used in t
© 1999 The American Physical Society
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LSDA is the function ehom
xc �n, m� produced by finite exter-

nal magnetic fields.
We apply the same philosophy to superconductors: The

homogeneous electron gas is exposed to an external pair-
ing field D0 which induces a finite order parameter x .
Consequently, the xc energy depends on the density n and
on x . To preserve translational invariance, the external
pairing field D0�r, r0� is chosen to depend on �r 2 r0�
only, so that its Fourier transform is given by D0�k� �R

d3�r 2 r 0�eik�r2r0�D0�r, r0�. As a consequence, the in-
duced order parameter x�r, r0� is translationally invariant
as well; its Fourier transform will be denoted by x�k�.
Considering a homogeneous superconductor at finite tem-
perature, we have to determine the xc free energy per unit
volume, fhom

xc �n, x�k��, which is a function of the (con-
stant) density n and a functional of x�k�. In analogy to
the LSDA functional discussed above, we then define the
LDA for superconductors by

FLDA
xc �n�R�, xW �R, k�� �

Z
d3R fhom

xc �n, x�
Ç

n�n�R�
x�xW �R,k�

,

(7)
where xW �R, k� is the Wigner transform

xW �R, k� �
Z

d3s eiksx

µ
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s
2

, R 2
s
2

∂
(8)

of the anomalous density x�r, r0� of the inhomogeneous
systems to be treated. It is obvious that this definition
correctly reduces to the LDA of nonsuperconducting sys-
tems in the limit x ! 0. At first sight, other definitions
of an LDA for superconductors with the correct nonsuper-
conducting limit might be conceivable. However, a sys-
tematic gradient expansion of the total-energy functional
shows that Eq. (7) is in fact the only correct LDA for su-
perconductors. This follows from a diagrammatic expan-
sion of the total energy of the inhomogeneous system in
terms of the normal and anomalous Green’ s functions and
the particle-particle interaction. A subsequent h̄ expan-
sion of the Green’ s functions [8] results in a semiclassical
expansion of the total energy. From this expansion one
readily concludes [9] that the lowest order terms in h̄ are
identical with the LDA, leading to Eq. (7).

The LDA requires fhom
xc as an input. To determine this

functional we have to calculate the free energy associated
with the Hamiltonian Ĥ � Ĥ0 1 Û, where
Ĥ0 �
X
s

X
k

�k2�2 2 m0�ĉy
ks ĉks

2
X
k

£
D�

0�k�ĉk"ĉ2k# 1 H.c.
§

(9)

describes a noninteracting gas exposed to the external
pairing field D0�k�. m0 is a shorthand for the constant
�m 2 y0� and Û represents the bare Coulomb interaction

Û �
1
2

X
s,s0

Z
d3r

Z
d3r 0 ĉy

s�r�ĉy
s0�r0�

1
jr 2 r0j

3 ĉs0�r0�ĉs�r� . (10)

In standard many-body perturbation theory one would
take Ĥ0 as the unperturbed Hamiltonian and Û as the
perturbation. For reasons explained below we choose, for
our diagrammatic analysis, the Kohn-Sham Hamiltonian

Ĥs �
X
s

X
k

�k2�2 2 ms�ĉy
ks ĉks

2
X
k

£
D�

s�k�ĉk"ĉ2k# 1 H.c.
§
, (11)

as the “unperturbed” Hamiltonian. ms is a shorthand
for the constant �m 2 ys� and Ds�k� is the KS pairing
potential (4) of a homogeneous system. The full Hamil-
tonian can then be written as Ĥ � Ĥs 1 Ĥ1 with the per-
turbation Ĥ1 � Û 2 Ĥs 1 Ĥ0. Because of the presence
of the pairing field Ds�k� in the unperturbed Hamilton-
ian Ĥs, the diagrammatic analysis not only involves the
normal KS Green’ s function Gs but also the anomalous
KS propagators Fs and Fy

s . The latter are represented
by lines with arrows pointing in opposite directions. The
three diagrams contributing to the free energy to first or-
der in Ĥ1 are shown in Fig. 1. However, only the third
diagram, Fig. 1c, contributes to the xc free energy Fxc.
Figure 1a corresponds to the classical electrostatic energy
of the charge distribution. This energy contribution is
not approximated within the LDA but rather treated ex-
actly, leading to the Hartree potential in Eq. (3). Like-
wise, the “anomalous Hartree energy” depicted in Fig. 1b
is not included in Fxc. This term leads to the anomalous
Hartree potential, the second term on the right-hand side
of Eq. (4). The only contribution to the xc free energy
per unit volume in first order is the exchange diagram of
Fig. 1c yielding
f̃hom
x �ms, Ds� � 2

1
4

Z d3k
�2p�3

d3k0

�2p�3

∑
1 2

´k 2 ms

Rk
tanh

µ
b

2
Rk
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4p

jk 2 k0j2

∑
1 2

´k0 2 ms

Rk0

tanh

µ
b

2
Rk0

∂∏
,

(12)
where Rk �
p

�´k 2 ms�2 1 jDs�k�j2 and ´k � k2�2.
The wiggly lines in Figs. 1a–1c represent the bare
Coulomb interaction Û. The first-order contributions
resulting from the one-body operators in Ĥ1 cancel
with terms in the free energy of the unperturbed system
described by the Hamiltonian Ĥs.

In second order, as in the normal electron gas, some of
the diagrams are divergent due to the long range of the
2629
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Coulomb interaction. To obtain a finite result a partial
resummation of an infinite subset of diagrams needs to be
performed. The simplest resummation of this kind is the
random phase approximation (RPA) [10], which includes
2630
the most divergent terms in every order. The RPA for
superconductors includes all the normal and anomalous
bubble diagrams as indicated in Fig. 2. The resummation
leads to
f̃RPA
c �ms, Ds� �

1
2b

X
nn

Z d3q
�2p�3

(
log

"
1 2 Ps�q, nn�

4p

q2

#
1 Ps�q, nn�

4p

q2

)
(13)

with the even Matsubara frequencies nn � 2np�b. Ps is the irreducible KS polarization given by

Ps�q, nn� �
2
b

X
vn

Z d3k
�2p�3 �Gs�k, vn�Gs�k 1 q, vn 1 nn� 1 Fs�k, vn�Fy

s �k 1 q, vn 1 nn�	 (14)
with the odd Matsubara frequencies vn � �2n 1 1�p�b.
Equations (12) and (13) represent the xc free energy

as a functional f̃hom
xc �ms, Ds�k�� of the potentials ms and

Ds�k� appearing in the KS Hamiltonian (11). The DFT
for superconductors, however, requires the xc energy as
a functional of the densities �n, x�k�	. By virtue of the
Hohenberg-Kohn theorem for superconductors [2], ap-
plied to the noninteracting case, the potentials �ms, Ds�k�	
and the densities �n, x�k�	 are in 1-1 correspondence, i.e.,
ms and Ds�k� can be written as functionals of n and x�k�,

ms � ms�n, x�k��, Ds�q� � Ds�n, x�k�� �q� ,

(15)

so that the desired density functional fhom
xc �n, x�k�� is

obtained from

fhom
xc �n, x�k�� � f̃hom

xc ���ms�n, x�k��, Ds�n, x�k����� .

(16)

The functionals (15) corresponding to noninteracting sys-
tems can be constructed explicitly by inverting the well-
known relations

n �
Z d3k

�2p�3

∑
1 2

´k 2 ms

Rk
tanh

µ
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2
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∂∏
, (17)
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2
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Rk

tanh

µ
b

2
Rk

∂
. (18)

Given some densities �n̄, x̄�k�	, the corresponding poten-
tials m̄s � ms�n̄, x̄�k�� and D̄s � Ds�n̄, x̄�k�� are deter-
mined by the following steps: (a) for fixed b, Eq. (18) is
inverted, leading to Ds�k� � D���ms, x̄�k����. At zero tem-
perature, the inverse function D is easily constructed ana-
lytically, while at finite temperature, D has to be evaluated
numerically from Eq. (18). (b) Insert the result of step
(a) in Eq. (17), yielding the density as a function n�ms�.
(c) Find m̄s such that n̄ � n�m̄s�. (d) Insert this m̄s in the

FIG. 1. First order diagrams contributing to the free energy.
inverse function D to get D̄s�k� � D���m̄s, x̄�k����. With
this procedure we have explicitly constructed the func-
tionals (15) and thereby the desired density functional
(16) for the xc energy. Had we chosen Ĥ0 as unper-
turbed Hamiltonian and Û as the perturbation, the dia-
grammatic analysis would have given the xc free energy

as a functional ˜̃f
hom
xc �m0, D0�k�� of the external potentials

m0 and D0�k�. By virtue of the Hohenberg-Kohn theo-
rem for superconductors [2], the latter can, in principle, be
eliminated in favor of the densities �n, x�k�	. In practice,
however, the required interacting functionals m0�n, x�k��
and D0�n, x�k�� are not known while the noninteracting
KS relations (15) can be constructed explicitly as shown
above. For this reason we performed the RPA resumma-
tion in terms of the KS propagators.

To gain some insight in the relative importance of the
anomalous Hartree, the exchange, and the correlation con-
tributions we have evaluated these energies for the simple
model pair potential D�k� � d exp�2 �k2kF �2

s2 �, where kF

is the Fermi wave vector and d and s are parameters. In
Fig. 3 we show the difference of exchange energies, fS

x 2

fN
x , in the superconducting �S� and normal conducting

�N� states, the negative difference, 2�fRPA,S
c 2 fRPA,N

c �,
of the corresponding RPA correlation energies, and the
anomalous Hartree energy, fAH. The plotted values
are the energy densities corresponding to zero tempera-
ture and rs � 1. Their dependence on the parameters d

and s turns out to be rather smooth. The exchange part
is positive and roughly 1 order of magnitude smaller than
the other two terms. The anomalous Hartree term gives
rise to a large positive contribution. The RPA correla-
tion energy difference �fRPA,S

c 2 fRPA,N
c �, on the other

hand, leads to a large negative contribution which nearly
cancels the positive Hartree term; the sum of the three
terms is positive everywhere. The same statement holds

FIG. 2. The RPA diagrams.
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FIG. 3. Numerical results for fS
x 2 fN

x (lower sheet),
fRPA,N

c 2 fRPA,S
c (middle sheet), and fH (upper sheet)

(rs � 1).

true for rs � 0.1, 1, 2, 3, 4, and 5. In the conventional
s-wave superconductors these Coulombic positive-energy
contributions are overcome by negative contributions due
to the electron-phonon coupling. We emphasize that for
the prediction of material-specific properties, such as Tc, it
is indispensible, even for the conventional s-wave super-
conductors, to treat both the electronic correlations and the
electron-phonon coupling from first principles. While the
former are taken care of by the proposed LDA functional,
the latter can be accounted for by an appropriate “exter-
nal” pairing field D0 in Eq. (4). In the weak-coupling
regime, D0 is well represented by the ordinary mean-field
potential associated with the Bardeen-Pines [11] interac-
tion. Strong electron-phonon coupling can also be treated
within the DFT for superconductors. This, however, is a
separate matter which will be discussed elsewhere [12].

In this work we have constructed an LDA-type func-
tional to be employed in the description of real (in
particular, inhomogeneous) materials. The functional is
obtained from the xc free energy of a homogeneous elec-
tron gas exposed to an external pairing field. Although
it is not the main purpose of this Letter, we finally ad-
dress the question whether the homogeneous electron gas
itself, i.e., without external pairing field, has a supercon-
ducting phase. This is a completely different and rather
subtle issue. It should be remembered that the LSDA as
it is commonly applied in ordinary DFT is not able to
describe realistically the spin-polarized phases of the ho-
mogeneous electron gas without external magnetic field.
These phases have been reliably calculated only very re-
cently [13]. The question whether the electron gas has
a superconducting phase has been discussed in a number
of publications: In a classical paper, Kohn and Luttinger
[14] predicted a superconducting phase at very low Tc

with an order parameter of high angular momentum. A
different mechanism, due to plasmon exchange, was sug-
gested later by Takada [15]. Sham and co-workers [16]
solved the Eliashberg equations with an RPA-screened in-
teraction and found superconductivity at unrealistically
high critical temperature. The inclusion of vertex and
other corrections [17] lowers Tc considerably. To investi-
gate this issue within the present DFT context, we have to
solve the KS equations (1) and (2) for a homogeneous sys-
tem with vanishing external pairing field. Clearly, in the
case of a uniform gas, the solutions for the particle and
hole amplitudes are plane waves. The self-consistency
condition (4) for the KS pairing potential is equivalent to
a gap equation that contains both mean-field (Hartree) and
xc contributions. We found that this gap equation has no
nonvanishing solutions with s-wave symmetry. Whether
or not the proposed RPA functional allows solutions of
the gap equation with higher angular momentum remains
to be investigated. Work along these lines is in progress.
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