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Many-Body Effects in fcc Metals: A Lennard-Jones Embedded-Atom Potential
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A simple analytic model that extends the Lennard-Jones potential into the many-body regime is
proposed. The two parameter model draws on the embedded-atom method formalism. The model is
used to calculate properties of an fcc material, e.g., elastic constants, Bain transformation, and defect
properties, as a function of many-body parameters. It is shown that the ground state structure of the
model includes all of the common phases. The melting point of an fcc material is shown to decrease
significantly as the many-body interactions are increased.

PACS numbers: 61.50.Lt, 62.20.Dc, 64.70.Dv, 64.70.Kb
The Lennard-Jones (LJ) potential [1] is one of the oldest
interatomic potentials in the literature. This potential has
been used to model a wide range of materials and phases,
ranging from rare gas solids to metallic liquids [2,3]. More
recently there has been renewed interest in homogeneous
nucleation from a LJ liquid [4–7], the dynamics of diffu-
sion in liquids and solids [8], and equilibrium structures in
supercooled liquids [9,10]. Many calculations have been
performed to examine free surfaces [11] and grain bound-
aries [12] in LJ materials. LJ potentials have recently
been used to model the fracture process in two dimen-
sional solids [13] and in quasicrystals [14]. There is a vast
database of knowledge available in the literature about the
behavior of LJ materials. Of course, the interactions in
real materials are more complex than that described by a
simple pair interaction. In the past fifteen years it has be-
come well accepted that many-body effects play an impor-
tant role in the behavior of materials, especially metals and
alloys [15]. Recognizing the need for many-body interac-
tions, Daw and Baskes [16,17] developed the embedded-
atom method (EAM) to treat metallic systems. The theory
behind EAM and many applications have recently been re-
viewed [18]. The purpose of this Letter is to present a very
simple extension of the LJ potential to allow investigation
of many-body effects. A model based on this concept was
previously presented by Holian et al. [19]. This extension
provides a simple analytic model that appears to be ex-
tremely rich in opportunity.

Let us start with an expression for the energy of bond
in a material described by the Lennard-Jones form,

fLJ �
1

r12 2
2
r6 , (1)

where the energy is measured in units of the well depth, ´,
and the atomic separation, r , is measured in units of r0 �
21�6s, where s is the LJ diameter. For an equilibrium fcc
material with only Z0 � 12 nearest neighbor interactions,
the scaled energy is equal to 2Z0�2, and the scaled
equilibrium nearest neighbor distance is unity. Using
this bond energy relationship and the nearest neighbor
fcc structure as a reference state, we may define a
simple EAM model for the total energy of an arbitrary
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arrangement of atoms [20],

E �
X

i

"
F�ri� 1

1
2

X
jfii

f�rij�

#
, (2a)

F�r� �
AZ0

2
r�ln�r� 2 1� , (2b)

f�r� � fLJ�r� 2
2
Z0

F���r�r���� , (2c)

ri �
1
Z0

X
jfii

r�rij� , (2d)

r�r� � exp�2b�r 2 1�� , (2e)

where the sums are over the j neighbors of an atom i,
and rij is the distance between the two atoms. The em-
bedding energy in Eq. (2b) is taken as a form motivated
by Pauling [21] and reproduces the classical bond energy,
distance, and coordination relationship [22]. The back-
ground electron density r is given by the usual linear su-
perposition of atomic densities r. We have introduced
two dimensionless parameters into the model: the extent
of the many-body bonding, quantified by the parameter A,
and the decay of the electron density, quantified by the
parameter b. Note that the model reduces to a LJ solid
for A � 0 and any value of b. The model is presented
for a single component material, but is easily extended to
multicomponent systems.

Using this simple model we may now examine how
properties of our fcc solid vary with the extent of the many-
body term (Table I). By our choice of the LJ potential
as a model of the reference fcc lattice, the bulk modulus
B, normalized by the LJ well depth ´, the atomic volume
V � r3

0 �
p

2, and the elastic anisotropy are forced to be
the same in the LJ and EAM-LJ models. Even though
the ratio of the shear elastic constants is independent
of the many-body interactions, the actual elastic shear
constants are reduced as the many-body term increases.
The Cauchy discrepancy, which of course is zero for a
pair potential, increases with the strength of the many-
body term. Similarly the unrelaxed vacancy formation
energy and surface energy [given here for a (100) surface]
are reduced as the many-body interactions increase. The
© 1999 The American Physical Society
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TABLE I. Comparison of LJ, EAM-LJ, and experimental normalized properties for fcc materials. The first column under
EAM-LJ gives the analytic expression, the second gives the calculated range of values using the range of A and b investigated in
this Letter.

Experiment
Property LJ EAM-LJ Rare Gas Metal

Bulk modulus BV�´ 48 48 48 52–58 14–28
Elastic anisotropy 2c44��c11 2 c12� 2 2 2 2.3–2.4 1.2–4.0
Elastic shear c44�B 0.75 3�4 �1 2 Ab2�72� 0–0.75 0.74–0.83 0.3–0.7
Cauchy discrepancy �c12 2 c44��B 0 Ab2�72 0–0.8 20.06 0.05 20.4 0.7
Vacancy energy E

f
1y�´ 6 6 �1 2 0.96A� 0–6 4.0–5.7 1.2–3.0

Surface energy Esurfr
2
0 �´ 2 2 �1 2 0.83A� 0–2 0.9–1.4
decrease in surface energy for the (111) and (110) surfaces
is almost identical to that of the (100) surface.

Let us now relate the model properties to real materials.
The final two columns of Table I give the range of normal-
ized properties for the rare gases and the 10 fcc materials
discussed in Ref. [20]. Here we see that the LJ (and EAM-
LJ) model has a bulk modulus significantly greater than
the fcc metals. The LJ model yields a bulk modulus about
15% lower than the experimental rare gas moduli. On the
other hand, the anisotropy ratio falls about in the middle
of the range of the fcc materials and within 20% for the
rare gases. The elastic shear modulus from LJ is at the top
of the experimental range for the fcc materials and is quite
accurate for the rare gases, but the addition of the many-
body term reduces the shear modulus into the range of the
fcc materials. For the rare gases the Cauchy discrepancy
is nearly zero and is modeled well by a pair potential. As
expected the EAM-LJ model can have a positive Cauchy
discrepancy in agreement with most of the fcc materials,
but only the addition of angular forces can reproduce the
negative Cauchy discrepancies seen in a small number of
fcc metals. It is well known that the vacancy formation en-
ergy calculated from a pair potential is significantly higher
than experiment even for a rare gas solid. Addition of the
many-body interactions reduces this energy to be more in
agreement with experiment. The surface energy from pair
potentials is in much better agreement with experiment, al-
beit somewhat high. Again the many-body term reduces
the surface energy. However, since the vacancy formation
and surface energy are strongly correlated (see the analytic
expression in Table I), we see why typical EAM functions,
which fit the vacancy formation energy, underestimate the
surface energy.

It is also of interest to examine the behavior of
crystal structures other than fcc. For simplicity here, we
will consider a small number of high symmetry atomic
arrangements, i.e., fcc, bcc, simple cubic (sc), diamond
cubic (dc), graphite sheets, and a dimer. The structures
were chosen to include a large range of coordination,
ranging from 1 for the dimer to 12 for fcc. In Table II we
see that the structural energy for the LJ model depends
rather sensitively on the inclusion of second neighbors,
especially for the bcc and sc structures. This effect occurs
because for bcc, the second neighbor distance is very
close to the first neighbor distance, while for sc there are
twice as many second neighbors as first neighbors. Thus
the following calculations are performed including second
neighbors for all structures.

For each structure the energy per atom was calculated at
zero pressure by minimizing the energy with respect to the
nearest neighbor distance. The results of the calculations
for the EAM-LJ model are presented in Fig. 1 as a phase
stability diagram. For this second neighbor model the
ground state using simply the LJ potential is the fcc
structure. Note that for a second neighbor model the ideal
hcp and fcc structural energies are identical. Thus we
observe that the ground state is fcc for low values of the
parameter A. We see that as the many-body interactions
are increased, the ground state changes from fcc to the
lower coordinated structures in a very regular fashion.
For the smaller values of b, i.e., a long range electron
density, the bcc structure is favored. The progression
towards the lowest coordinated states (dimer) is facilitated
by a shorter range electron density.

It is interesting to investigate the transitions from one
phase to another. A recent Letter [23] described first
principles local density approximation calculations of the
Bain tetragonal distortion taking a crystal between the fcc
and bcc structures. These calculations showed that the
phase with the higher energy was unstable with respect
to the Bain distortion, even though it was stable with
respect to a cubic distortion. Using the EAM-LJ model
and considering interactions to second neighbors, we have
calculated the structural energy as a function of Bain
distortion for three cases. The first case is simply the

TABLE II. Number of first �Z1� and second �Z2� neighbors
for various structures. The ratio of the second neighbor dis-
tance �r2� to first neighbor distance �r1� and the ratio of the LJ
energy considering up to second neighbor interactions �E2� to
the energy considering only first neighbor interactions �E1� are
also given.

Z1 Z2 r2�r1 E2�E1

fcc 12 6
p

2 1.1
bcc 8 6

p
4�3 1.5

sc 6 12
p

2 1.5
dc 4 12

p
8�3 1.3

Graphite 3 6
p

3 1.1
Dimer 1 · · · · · · · · ·
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FIG. 1. Ground state structure as a function of the model
parameters A and b.

LJ pair model �A � 0� which has the fcc phase more
stable than the bcc phase. The other two cases have
a varying amount of many-body contribution that was
chosen (see Fig. 1) so that the fcc phase is stable in one
case �A � 0.5, b � 6� and the bcc phase, in the other
�A � 1, b � 2�. The results are shown in Fig. 2. The
energy is calculated for a fixed c�a ratio and variable
volume, which is chosen to produce a minimum energy.
For the case of pure pair potential �A � 0� the bcc phase
is actually at a very shallow metastable minimum and
for the many-body case, the fcc phase is at a maximum.
On the other hand, when bcc is the lower energy phase,
the fcc phase has a very shallow minimum. It is quite
encouraging that a model as simple as EAM-LJ is able
to reproduce the behavior seen in the first principles
calculations.

The melting of LJ solids is one of the most widely stud-
ied phenomena in model systems. The calculated melting
point depends weakly on the interaction range and is ap-
proximately given by kTm�´ � 0.7 [24]. This melting
point is in reasonable agreement with the experimental
melting point of the rare gases. In contrast, the melt-
ing point of fcc metals is found to be significantly lower,
i.e., kTm�´ � 0.1 0.3. Using the first neighbor EAM-LJ
model, the melting point as a function of the amount of
many-body bonding was calculated.

The calculation used the molecular dynamics technique
of examining the motion of a solid�liquid interface to de-
termine the melting point. This technique has the advan-
tage of not having to nucleate either the liquid or the solid
phase. We start with a cube of fcc material containing
2048 atoms of reduced mass 1, periodic in three dimen-
sions. The interactions were truncated at a reduced dis-
tance of 1.4 using a method previously discussed [25].
The atoms were equilibrated at kT�´ � 0.5 and zero
pressure for 1 unit of reduced time using Nose-Hoover
temperature control [26,27], Parrinello-Rahman boundary
conditions [28], and a time step of 0.001 in units of re-
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FIG. 2. Scaled energy vs the c�a ratio for the tetragonal Bain
transformation. Three cases are shown, representing the LJ
model �A � 0� and two EAM-LJ models. The fcc structure
occurs at c�a � 1 and the bcc at 0.707. Insets show the detail
of the higher energy phase.

duced time. Approximately half of the crystalline sample
�x . 0� was then melted by increasing the temperature
to kT�´ � 2 for 10 units of reduced time while keeping
the atoms in the other half �x , 0� fixed. The periodic
lengths in the y and z directions were held fixed, while
the length in x was allowed to increase to allow the liquid
to expand to maintain zero pressure. The radial distri-
bution function of the high temperature region showed a
characteristic liquid signature [3]. The thermostat of the
whole sample was then set to various temperatures and the
total energy was monitored for up to 30 units of reduced
time. At a temperature above the melting point, the en-
ergy increased and the sample melted fully. Conversely
at temperatures below the melting point the energy de-
creased and the whole sample ended up solid. Using this
method it is easy to determine the melting point.

For the pure first neighbor LJ model �A � 0� the melt-
ing point was found to be given by kTm�´ � 0.52 some-
what below the LJ melting point for a longer interaction
range. We found that the LJ melting point increased to
kTm�´ � 0.55 when second neighbors were included. By
scaling to the cohesive energy instead of the LJ bond en-
ergy, the melting points for both first �kTm�E0 � 0.087�
and second neighbor interactions �kTm�E0 � 0.082� are
found to be very close. Broughton and Gilmer [3] re-
port a melting point of the LJ solid kTm�E0 � 0.083 for
an interaction range of fourth neighbors, and Chokappa
and Clancy [29] report kTm�E0 � 0.084 for the standard
LJ seventh neighbor cutoff of rc�s � 2.5. These values
are almost identical to the value reported here for second
neighbor interactions.

The melting point was determined as a function of the
many-body interactions for two values of b. The results
are shown in Fig. 3. We see that the melting tempera-
ture decreases monotonically with increasing many-body
interactions. In addition, there is a significant lowering
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FIG. 3. Melting point (full lines) as a function of the model
parameters A and b. Points actually calculated are shown by
the symbols. The dashed lines show the decrease in the melting
point expected if melting is controlled by shear.

of the melting point with increasing b. For the model
with b � 8.49 and A � 1 the fcc structure is not stable
relative to the liquid at any temperature. This instability
may be understood by looking at the analytic expressions
in Table I. Using these expressions we see that the
shear elastic constants are zero, and the vacancy formation
energy is less than zero. The decrease with melting
point may be understood by examining the dependence of
the shear elastic constants with model parameters. From
Table I we see that c44 at 0 K decreases as 1 2 Ab2�72.
If melting is controlled by shear processes, we would
expect that the melting point would be proportional to the
shear modulus. This dependence is shown in the figure
and it is seen that the calculated melting point scales
quite well with the value of the shear modulus at room
temperature. Of course, the shear modulus itself decreases
with temperature. This effect could lead to an additional
lowering of the melting point. In contrast, if melting
were controlled by vacancy formation, we would expect
the melting point to be independent of b and to follow a
curve similar to the lower dashed line in Fig. 3. Models
of melting have been developed based on shear instability
[30,31] and excess vacancies [32]. The EAM-LJ model is
more consistent with the shear instability model.
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