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Asymptotic Theory for the Probability Density Functionsin Burgers Turbulence
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A systematic analysis is carried out for the randomly forced Burgers equation in the infinite Reynolds
number (inviscid) limit. No closure approximations are made. Instead the probability density functions
of velocity and velocity gradient are related to the statistics of quantities defined along the shocks. This
method allows one to compute the dissipative anomalies, as well as asymptotics for the structure
functions and the probability density functions. It is shown that the left tail for the probability density
function of the velocity gradient has to decay faster th&f3. A further argument confirms the
prediction of Eet al. [Phys. Rev. Lett78, 1904 (1997)] that it should decay k& ~7/2.

PACS numbers: 47.27.Gs, 02.50.Ey, 05.40.—-a

In this Letter, we focus on statistical properties ofwhereB; = —B,,(0). (£, | £)isthe ensemble average of
solutions of the randomly forced Burgers equation, &, conditional oné. The explicit form of this term is un-
known, leaving (3) unclosed. There have been several pro-
up + uny = vuy + f, (1) posals on how to evaluater((£,, | £)Q); approximately

. - .._in the infinite Reynolds number (inviscid) limit:
wheref is a zero-mean, statistically homogeneous, white-

in-time Gaussian process with covariance, F(&,1) = — IimOv(<§m [ £)0)¢ . 4

(fx,0)f(y,5)) = 2B(x — y)o(t — s), (2) At steady state, they all lead to an asymptotic expression

of the form
whereB(x) is smooth. Equation (1) and its multidimen-

sional versions have received much attention recently for 0(&) ~ {C—lfl_“ \ as¢g — — (5)
two main reasons. First, (1) serves as a qualitative model Cy£Pe¢/CB)  as¢ — +oo,

for a wide variety of problems including charge density
waves [1], vortex lines in high temperature superconduc
tors [2], dislocations in disordered solids, kinetic rough- i
ening of interfaces in epitaxial growth [3], etc. The OPerator product expansion, Polyakov [5] suggested that
second reason is that (1) has served as the benchmark fr—aQ + b<O, witha = 0andb = —1/2. Th|s leads
approximation developed for solving the problem of hy-© @ = 5/2and 8 = 1/2. Boldyrev [9] considered the
drodynamic turbulence. This role of (1) is made more evi-Same closure with-1 = b = 0, which gives2 = a =3
dent by the recent flourish of activities introducing fairly 14 8 = 1 + b. Bouchaud and Mézard [7] introduced
sophisticated techniques in field theory to hydrodynamic§1 L.angf?"'” equation for the local slppe of the veloc_lty,
[4—-6]. Since the phenomenology of the so-called Burger hich gves2 = a = 3,5 = 0. _The Instanton analy5|s
turbulence is far simpler than that of real turbulence, on 6,8] predicts th_e right tail O.Q without giving a precise
hopes that exact results can be obtained which can then §&U€ for8, and it does not give any specific prediction for

used to benchmark the methods. However, thus far oJf'€ left tail. Eetal. [10] made a geometrical evaluation of
experience has proved otherwise: The problem of force e effect ofF, based on the observation that large negative

Burgers turbulence is complicated enough that a wide Vag_radients are generated near shock creation. Their analysis

riety of predictions have been made as a consequen(%ves a rigorous upper bound f@_r: @ =7/2. In [10], .
of the wide variety of techniques used [5—13]. The't was claimed that this bound is actually reached, i.e.,

main purpose of the present Letter is to clarify this situ-¢ — //2- Finally Gotoh and Kraichnan [11] argued that

ation and obtain exact results that are expected for forcetfi€ ViSCous term is negllg}ble to leading order for large

Burgers turbulence. |£],i.e.,F = 0for|&| > B% ?. This approximation leads

We are particularly interested in the probability densityto @ =3 and g = 1. In this Letter, we proceed at an
function (PDF) of the velocity gradiert(x, 1) = u,(x, ), exact evaluation of (4) and we prove thathas to be
since it depends heavily on the intermittent events createdfrictly larger than 3 (a result which holds not only at steady
by the shocks. Assuming statistical homogeneity, andtate). At steady state, we prove tifat= 1 and we give
letting Q(¢, 1) be the PDF of (x, 1), it can be shown that an argument which supports strongly the prediction of [10],
Q satisfies namely,a = 7/2.

To begin with, let us remark that it is established in the
0, =§&0 + (§2Q)§ + B1Qse — v({éxx 1 €)0)e, (8)  mathematics literature that the infinite Reynolds number

for Q, but with a variety of values for the exponents
and B (here theC-'s are constants). By invoking the
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limit,
uO(x, 1) = |Lr‘r(l)u(x, 1), (6)

exists for almost all (x,7) (see, e.g., [14]). Since u° will,
in general, be discontinuous due to the presence shocks,
the inviscid Burgers equations have to be interpreted in
the weak sense by requiring

[ f drdifie; + LW, + o} =0,  (7)

for all test functions ¢. The solutions «° satisfying (7)
are called weak solutions. In this framework, the effect
of dissipation is accounted for by jump (or entropy)
conditions at the shocks. An alternative, more intuitive,
way of accessing the effect of the viscous shock on
the velocity profile outside the shock is to carry out an
asymptotic analysis near and inside the shock. Here, we
will take the second approach and refer the interested
reader to [15] for calculations with weak solutions. It is
important to remark that the two approaches lead to the
same results.

Before considering velocity gradient, it is helpful to
study the statistics of velocity itself. Let R(u,t) be the
PDF of u(x,t). Assuming statistical homogeneity, R
satisfies

R, = BoRyy — V(<uxx | M>R)u s (8)

where By = B(0). To compute —v({uy, | u)R),, let us
note that for » <« 1, the solutions of (1) consist of smooth
pieces where the viscous effect is negligible, separated
by thin shock intervals inside which the viscous effect

can be used to approximate u(x,t). The basic idea is
to split u into the sum of an inner solution near the
shock and an outer solution away from the shock, and use
systematic matched asymptotics to construct a uniform
approximation of u.

The outer solution can be obtained as a series expan-
sonin v: u = u®" = uy + vu; + O(v?). In order to
deal with the inner solution around the shock, say, at
x = y, define the stretched variable z = (x — y)/v, and
let u(x,1) = u™(x,7) = v[(x — y)/v,t]. The definition
of the stretched variable is motivated by the fact that the
width of the shock is O(r). We look for an expression
for v in the form of a series expansion in v: v = vy +
vv; + 0(v?). Following a standard matched asymp-
totics procedure, we can systematically write down equa-
tions for vg, vy,.... For example, vo(z, t) satisfies (vy —
i1)vg, = Vo, Yielding the leading order velocity profile
inside the shock layer: vo(z,t) = i — (s/2)tanh(sz/4).
Here, it = dy/dt, s is the jump across the shock, and the
actual values of # and s are obtained from the matching
conditions between u°" =~ uy and u™ =~ v,. It is well
known that s = 0. Higher order corrections can be ob-
tained in asimilar way (for details, see [13,15]).

We use the results of the boundary layer analysis to
evaluate the viscous term in (8). By definition [16],

L

. 1
v{(ue |u)R = Vlei ] de U dlu — ulx,0)].  (9)

In the limit as » — 0 only smal intervals around the
shocks will contribute to the integral, and in these inter-
vals we can approximate the velocity by »'™. To O(v),

is important. In these intervals, boundary layer anaysis | this gives

(e [OR = v lim - L
VUxx | U VL—»OOZLN a

+o0
Z/ dxu™ 8[u — u™(x,1)] = p f ds dit T(ﬁ,s,t)f dz vo, 0[u — vo(z,1)],
jth layer —®

(10)

where in the second integral we changed to the stretched variable z = (x — y)/v andtook L — . Here, N denotes the
number of shocksin[—L, L], p = lim;.—. N /2L isthe number density of shocks, T (i, s, r) isthe PDF of [i(y, 1), s(y, )]
conditional on the property that there is a shock at position y (7 isindependent of y because of statistical homogeneity).

To evauate the z integral in (10), we can use the equation for vy, (vo — #)vo, =

V0,2, and change the integration variable

from z to vg using dzvo,, = dvovo,/ve, = dvg(vy — ). Theresultis

0
lime{u,, | u)R = —pf dsf
r—0 — u+ts/2

u—s/2
di(u — w)T(a,s,t). 1D

This equation gives an exact expression for the viscous | This gives a quantitative description of the energy dissi-

contribution in the limit as v — 0 in terms of certain
statistical quantities associated with the shocks. Of course,
using (11) in (8) does not lead to a closed equation since
T remains to be specified. However, information can
aready be obtained at this point without resorting to any
closure assumption. For instance, using (11) in (8) and
taking the second moment of the resulting equation yields
d{u?)/dt = 2By — 2¢€ with

e = limu(ud) = = p(lsP). (12)

pation at the shocks. At statistical steady state, this gives
By = p(IsP’)/12.

Similar calculations can be carried out for multipoint
PDF's and, in particular, for Z°(w, x, t), the PDF of the
velocity difference Su(x,z,t) = ulx + z,1) — u(z, 1),
x > 0. It leadsto an equation of the form

w
70 = —wz? — 2[ daw' Z3(w', x, 1)

+ 2[By — B(x)]Z8,, + G°(w,x,1), (13)
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where, to o(1), G? is given by

G%(w,x,t) = plwS(w,t) + (s)6(w)] — 2pH(w)

+ 2pf dw' S(w',t) + o(1). (14)
Here, H(w) is the Heaviside function and S(s,t) =
[daT(a,s,t) isthe conditional PDF of s(y, ). By direct
substitution, it may be shown that the solution of (13) is
[17]

7z =01 - px)iQ<E,t> + pxSw, 1) + o(x).
X X
(15)

The first term in this expression contains Q(¢,1), the
PDF of the nonsingular part of the velocity gradient,
to be considered below [see (18)]. This term accounts
for the realizations of the flow where there is no shock
between z and x + z [an event of probability 1 — px +
O0(x?)]. Thenexttermin (15), pxS(w, t), accounts for the
realizations of the flow where there is a shock between
z and x + z [an event of probability px + O(x?)].
Equation (15) can be used to compute the structure
functions, {|6ul?) = [dw|w|?Z°. Thisgives

fo=a<1

Joulty = | S4ER ol HO=a <1 g

xp(ls|) + o(x)

where (|£]*) = [d¢l€1°Q. Using p(lsI) = 12B,, we
get Kolmogorov's relation for a = 3:

(16ul®) = 12xBy + o(x). 17)

We now go back to the velocity gradient. Observe first
that, in the limit as v — 0, the velocity gradient can be
written as

uex, 1) = £0e, ) + D s(y)8(x —y;),  (18)
J

where the y;’s are the locations of the shocks, and ¢ is
the regular part of u,. Assuming homogeneity, a direct
consequence of (18) is

(uy) = (&) + p(s) = 0. (19

Unlike the viscous case where & = u,, hence, (£) = 0,
we have (£) = —p(s) # 0 in the limit as » — 0. Note
also that the solutions of (3) converge as v — 0 to the
PDF of ¢ only, which is still going to be denoted by Q.
To evaluate F, there are two ways to proceed. One
is to rewrite (13) in terms of the PDF of [u(x + z,1) —
u(z,t)]/x and take the limit as x goes to zero. This is
the approach taken in [15]. The other is to evaluate (4)
directly. The two approaches amount to different orders
of taking the limit x — 0,» — 0, and give the same
result. Hence, the two limiting processes commute. We
will take the second approach and evaluate (4) using the
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same basic idea as above. By definition [16],

N
el 0 = vlim 5o [ dx eucdle = (0],

(20)

Thisintegral is evaluated similarly as (9). We use bound-
ary layer analysis to approximate £(x, t) by the inner solu-
tion £ (x, ) = u"(x, ¢) in the intervals around the shocks
which give the only surviving contribution in the limit
as v — 0. We skip these calculations (for details, see
[13,15]), noting simply that the boundary layer analysis
has to be carried one order further for the velocity gradient
than for velocity itself. Indeed &M = u" = v~ 1y, +
v + O(v), and the contribution of v, turns out to be
important. The calculation eventually leads to the follow-

ing expression for F = — lim,_ov((&x | £)0)¢:
0
F(&,1) = p[ ds sV (s, &, 1), (21D
where V(s,£.1) = A[Vi(s,£,0) + V_(s,£.1)),

Vi(s,é+,t) ae the  conditional PDF's of
[s(y,1), (v, 0)], £«(y,t) are the velocity gradients
at the left and at the right of the shock. Thus, in the
infinite Reynolds number limit, the PDF of the regular
part of the velocity gradient satisfies

0: = €0 + (£20)¢ + B1Qge + F(&,1). (22

One important consequence of (22), together with the
equations of motion along the shocks,

ds K
il (R SO0
dn K (23)
i (S 20 R
is the statement that
A £on =0, (24)

i.e, Q goes to zero faster than |£|2 as ¢ — —o and
& — +oo,and a >3 in (5). To see this, take the first
moment of (22):

SO =1001% + L (e + (6, (29

where we used [dé éF = p({(sé-) + (sé+))/2. Next,
average the first equationsin (23):

d __P
E(m» =5 (sé-) + (sé4)). (26)

This equation uses the fact that shocks are created at
zero amplitude, and shock strengths add up at collision.
These are consequences of the fact that the forcing is
smooth in space. Since d{¢)/dt = —d(p{s))/dr from
(19), the comparison between (25) and (26) tells us
that the boundary term in (25) must be zero. Since
0 =0, £0 has different sign for large positive and
large negative values of ¢£. Therefore we must have
limg—1£2Q = 0 and limg——.£3Q = 0. Hence, (24).
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The analysis can be carried out one step further for the
stationary case (Q, = 0). Then, treating (22) as an in-
homogeneous second order ordinary differential equation,
wecanwriteitsgenera solutionasQ = C,0Q + C,Q, +
03, where C; and C, are constants, 0, and Q, aretwo lin-
early independent solutions of the homogeneous equation
associated with (22), and Q3 is some particular solution of
this equation. One such particular solution is

_[F L EFE) Eeh [
erﬁff B, &'ﬁjféG@L
(27)
where A = £3/(3B,) and
¢ / !
6 -+ e[ ag LS

With this particular solution, it can be shown (see [13,15]
for details) that the realizability constraints imply that
Cy = C, =0, i.e, the only non-negative, integrable so-
lution is 0 = Q5. Furthermore, in order that O actually
be non-negative, F must satisfy

glirp E2MF(E) = 0. (29)
Substituting into (27), we get

_ColEl L dE EF(E) asE — —o
¢ Ciéeh as & — +o, (30)

which confirms the result O ~ C_|£|7% with @ > 3 as
& — —oo,and gives B8 = 1.

The actual value of the exponent o depends on the
asymptotic behavior of F. The latter can be obtained
from further considerations on the dynamics of the shock
(23). Thisisrather involved and will be left to [15]. The
result gives @ = 7/2 which confirms the prediction of
[10]. Here, we will restrict ourselves to an interpretation
of the current approach in terms of the geometric picture
on the local analysis of shock creation [18]. Observe that
the largest values of £ are achieved just after the shock
formation. For a shock created at (x,¢) = (0,0) with
velocity u = 0, we havelocally x = ut — au® + ---. It
follows that s = —2(r/a)/?, é+ = —1/2t. Assuming
that these give the dominant contribution to F(&) for
large negative values of ¢, the asymptotic form of F
iISF ~ C [ydts[8(¢§ — £-) + 8(¢& — £€4)], where C is
some constant related to the statistics of the shock lifetime
and a, s = —2(t/a)'/?, €&+ = —1/2¢. Direct evauation
of thisintegral gives F ~ C|&|5/2, and, hence,

0~ C_|e]T? asé— —o. (31)

Even though this argument gives only a lower bound
for F a large negative values of ¢, further arguments
presented in [15] indicate that this lower bound is actually
sharp.

In summary, we derived master equations by evaluating
the infinite Reynolds number limit of the dissipative effect

of the singular structures, here the shocks. We also ex-
plored the consequences of the master equations without
resorting to closure assumptions. Asymptotic scaling of
the structure functions and bounds for the asymptotic be-
havior of the PDF of the velocity gradient were obtained
using self-consistent asymptotic analysis and realizability
constraints. Finally, the |£]|~7/2 prediction for the left tail
of the velocity gradient PDF was obtained by local analy-
sis around the singular structures. We certainly hope that
this philosophy will be useful for other problems.
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