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Asymptotic Theory for the Probability Density Functions in Burgers Turbulence
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A systematic analysis is carried out for the randomly forced Burgers equation in the infinite Reynold
number (inviscid) limit. No closure approximations are made. Instead the probability density function
of velocity and velocity gradient are related to the statistics of quantities defined along the shocks. Th
method allows one to compute the dissipative anomalies, as well as asymptotics for the structu
functions and the probability density functions. It is shown that the left tail for the probability density
function of the velocity gradient has to decay faster thanjjj23. A further argument confirms the
prediction of Eet al. [Phys. Rev. Lett.78, 1904 (1997)] that it should decay asjjj27�2.
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In this Letter, we focus on statistical properties o
solutions of the randomly forced Burgers equation,

ut 1 uux � nuxx 1 f , (1)

wheref is a zero-mean, statistically homogeneous, whit
in-time Gaussian process with covariance,

�f�x, t�f�y, s�� � 2B�x 2 y�d�t 2 s� , (2)

whereB�x� is smooth. Equation (1) and its multidimen
sional versions have received much attention recently
two main reasons. First, (1) serves as a qualitative mod
for a wide variety of problems including charge densit
waves [1], vortex lines in high temperature supercondu
tors [2], dislocations in disordered solids, kinetic rough
ening of interfaces in epitaxial growth [3], etc. The
second reason is that (1) has served as the benchmark
approximation developed for solving the problem of hy
drodynamic turbulence. This role of (1) is made more ev
dent by the recent flourish of activities introducing fairly
sophisticated techniques in field theory to hydrodynami
[4–6]. Since the phenomenology of the so-called Burge
turbulence is far simpler than that of real turbulence, on
hopes that exact results can be obtained which can then
used to benchmark the methods. However, thus far o
experience has proved otherwise: The problem of forc
Burgers turbulence is complicated enough that a wide v
riety of predictions have been made as a conseque
of the wide variety of techniques used [5–13]. Th
main purpose of the present Letter is to clarify this situ
ation and obtain exact results that are expected for forc
Burgers turbulence.

We are particularly interested in the probability densit
function (PDF) of the velocity gradientj�x, t� � ux�x, t�,
since it depends heavily on the intermittent events crea
by the shocks. Assuming statistical homogeneity, an
letting Q�j, t� be the PDF ofj�x, t�, it can be shown that
Q satisfies

Qt � jQ 1 �j2Q�j 1 B1Qjj 2 n��jxx jj�Q�j , (3)
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whereB1 � 2Bxx�0�. �jxx jj� is the ensemble average o
jxx conditional onj. The explicit form of this term is un-
known, leaving (3) unclosed. There have been several p
posals on how to evaluate2n��jxx jj�Q�j approximately
in the infinite Reynolds number (inviscid) limit:

F�j, t� � 2 lim
n!0

n��jxx jj�Q�j . (4)

At steady state, they all lead to an asymptotic express
of the form

Q�j� �
Ω

C2jjj
2a asj ! 2`

C1jbe2j3��3B1� asj ! 1` , (5)

for Q, but with a variety of values for the exponentsa

and b (here theC6’s are constants). By invoking the
operator product expansion, Polyakov [5] suggested t
F � aQ 1 bjQ, with a � 0 andb � 21�2. This leads
to a � 5�2 and b � 1�2. Boldyrev [9] considered the
same closure with21 # b # 0, which gives2 # a # 3
and b � 1 1 b. Bouchaud and Mézard [7] introduced
a Langevin equation for the local slope of the velocit
which gives2 # a # 3, b � 0. The instanton analysis
[6,8] predicts the right tail ofQ without giving a precise
value forb, and it does not give any specific prediction fo
the left tail. Eet al. [10] made a geometrical evaluation o
the effect ofF, based on the observation that large negati
gradients are generated near shock creation. Their anal
gives a rigorous upper bound fora: a # 7�2. In [10],
it was claimed that this bound is actually reached, i.e
a � 7�2. Finally Gotoh and Kraichnan [11] argued tha
the viscous term is negligible to leading order for larg
jjj, i.e.,F � 0 for jjj ¿ B

1�3
1 . This approximation leads

to a � 3 and b � 1. In this Letter, we proceed at an
exact evaluation of (4) and we prove thata has to be
strictly larger than 3 (a result which holds not only at stead
state). At steady state, we prove thatb � 1 and we give
an argument which supports strongly the prediction of [10
namely,a � 7�2.

To begin with, let us remark that it is established in th
mathematics literature that the infinite Reynolds numb
© 1999 The American Physical Society
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limit,

u0�x, t� � lim
n!0

u�x, t� , (6)

exists for almost all �x, t� (see, e.g., [14]). Since u0 will,
in general, be discontinuous due to the presence shocks,
the inviscid Burgers equations have to be interpreted in
the weak sense by requiringZ Z

dx dt�u0wt 1
1
2 �u0�2wx 1 fw	 � 0 , (7)

for all test functions w. The solutions u0 satisfying (7)
are called weak solutions. In this framework, the effect
of dissipation is accounted for by jump (or entropy)
conditions at the shocks. An alternative, more intuitive,
way of accessing the effect of the viscous shock on
the velocity profile outside the shock is to carry out an
asymptotic analysis near and inside the shock. Here, we
will take the second approach and refer the interested
reader to [15] for calculations with weak solutions. It is
important to remark that the two approaches lead to the
same results.

Before considering velocity gradient, it is helpful to
study the statistics of velocity itself. Let R�u, t� be the
PDF of u�x, t�. Assuming statistical homogeneity, R
satisfies

Rt � B0Ruu 2 n��uxx j u�R�u , (8)

where B0 � B�0�. To compute 2n��uxx ju�R�u, let us
note that for n ø 1, the solutions of (1) consist of smooth
pieces where the viscous effect is negligible, separated
by thin shock intervals inside which the viscous effect
is important. In these intervals, boundary layer analysis
can be used to approximate u�x, t�. The basic idea is
to split u into the sum of an inner solution near the
shock and an outer solution away from the shock, and use
systematic matched asymptotics to construct a uniform
approximation of u.

The outer solution can be obtained as a series expan-
sion in n: u � uout � u0 1 nu1 1 O�n2�. In order to
deal with the inner solution around the shock, say, at
x � y, define the stretched variable z � �x 2 y��n, and
let u�x, t� � uin�x, t� � y
�x 2 y��n, t�. The definition
of the stretched variable is motivated by the fact that the
width of the shock is O�n�. We look for an expression
for y in the form of a series expansion in n: y � y0 1

ny1 1 O�n2�. Following a standard matched asymp-
totics procedure, we can systematically write down equa-
tions for y0, y1, . . . . For example, y0�z, t� satisfies �y0 2

ū�y0z � y0zz , yielding the leading order velocity profile
inside the shock layer: y0�z, t� � ū 2 �s�2� tanh�sz�4�.
Here, ū � dy�dt, s is the jump across the shock, and the
actual values of ū and s are obtained from the matching
conditions between uout � u0 and uin � y0. It is well
known that s # 0. Higher order corrections can be ob-
tained in a similar way (for details, see [13,15]).

We use the results of the boundary layer analysis to
evaluate the viscous term in (8). By definition [16],

n�uxx j u�R � n lim
L!`

1
2L

Z L

2L
dx uxxd
u 2 u�x, t�� . (9)

In the limit as n ! 0 only small intervals around the
shocks will contribute to the integral, and in these inter-
vals we can approximate the velocity by uin. To O�n�,
this gives
n�uxx j u�R � n lim
L!`

N
2L

1
N

X
j

Z
jth layer

dx uin
xxd
u 2 uin�x, t�� � r

Z
ds dū T �ū, s, t�

Z 1`

2`
dz y0zzd
u 2 y0�z, t�� ,

(10)

where in the second integral we changed to the stretched variable z � �x 2 y��n and took L ! `. Here, N denotes the
number of shocks in 
2L, L�, r � limL!` N�2L is the number density of shocks, T �ū, s, t� is the PDF of 
ū�y, t�, s�y, t��
conditional on the property that there is a shock at position y (T is independent of y because of statistical homogeneity).
To evaluate the z integral in (10), we can use the equation for y0, �y0 2 ū�y0z � y0zz , and change the integration variable
from z to y0 using dzy0zz � dy0y0zz�y0z � dy0�y0 2 ū�. The result is

lim
n!0

n�uxx j u�R � 2r
Z 0

2`
ds

Z u2s�2

u1s�2
dū�u 2 ū�T �ū, s, t� . (11)
This equation gives an exact expression for the viscous
contribution in the limit as n ! 0 in terms of certain
statistical quantities associated with the shocks. Of course,
using (11) in (8) does not lead to a closed equation since
T remains to be specified. However, information can
already be obtained at this point without resorting to any
closure assumption. For instance, using (11) in (8) and
taking the second moment of the resulting equation yields
d�u2��dt � 2B0 2 2e with

e � lim
n!0

n�u2
x� �

1
12

r�jsj3� . (12)
This gives a quantitative description of the energy dissi-
pation at the shocks. At statistical steady state, this gives
B0 � r�jsj3��12.

Similar calculations can be carried out for multipoint
PDF’s and, in particular, for Zd�w, x, t�, the PDF of the
velocity difference du�x, z, t� � u�x 1 z, t� 2 u�z, t�,
x . 0. It leads to an equation of the form

Zd
t � 2wZd

x 2 2
Z w

2`
dw0 Zd

x �w0, x, t�

1 2
B0 2 B�x��Zd
ww 1 Gd�w, x, t� , (13)
2573
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where, to o�1�, Gd is given by

Gd�w, x, t� � r
wS�w, t� 1 �s�d�w�� 2 2rH�w�

1 2r
Z w

2`
dw0 S�w0, t� 1 o�1� . (14)

Here, H�w� is the Heaviside function and S�s, t� �R
dū T �ū, s, t� is the conditional PDF of s�y, t�. By direct

substitution, it may be shown that the solution of (13) is
[17]

Zd � �1 2 rx�
1
x

Q

µ
w
x

, t

∂
1 rxS�w, t� 1 o�x� .

(15)

The first term in this expression contains Q�j, t�, the
PDF of the nonsingular part of the velocity gradient,
to be considered below [see (18)]. This term accounts
for the realizations of the flow where there is no shock
between z and x 1 z [an event of probability 1 2 rx 1

O�x2�]. The next term in (15), rxS�w, t�, accounts for the
realizations of the flow where there is a shock between
z and x 1 z [an event of probability rx 1 O�x2�].
Equation (15) can be used to compute the structure
functions, �jduja� �

R
dwjwjaZd. This gives

�jduja� �

Ω
xa�jjja� 1 o�xa� if 0 # a , 1
xr�jsja� 1 o�x� if 1 , a , (16)

where �jjja� �
R

djjjjaQ. Using r�jsj3� � 12B0, we
get Kolmogorov’s relation for a � 3:

�jduj3� � 12xB0 1 o�x� . (17)

We now go back to the velocity gradient. Observe first
that, in the limit as n ! 0, the velocity gradient can be
written as

ux�x, t� � j�x, t� 1
X
j

s�yj�d�x 2 yj� , (18)

where the yj ’s are the locations of the shocks, and j is
the regular part of ux . Assuming homogeneity, a direct
consequence of (18) is

�ux� � �j� 1 r�s� � 0 . (19)

Unlike the viscous case where j � ux , hence, �j� � 0,
we have �j� � 2r�s� fi 0 in the limit as n ! 0. Note
also that the solutions of (3) converge as n ! 0 to the
PDF of j only, which is still going to be denoted by Q.

To evaluate F, there are two ways to proceed. One
is to rewrite (13) in terms of the PDF of 
u�x 1 z, t� 2

u�z, t���x and take the limit as x goes to zero. This is
the approach taken in [15]. The other is to evaluate (4)
directly. The two approaches amount to different orders
of taking the limit x ! 0, n ! 0, and give the same
result. Hence, the two limiting processes commute. We
will take the second approach and evaluate (4) using the
2574
same basic idea as above. By definition [16],

n�jxx jj�Q � n lim
L!`

1
2L

Z L

2L
dx jxxd
j 2 j�x, t�� .

(20)

This integral is evaluated similarly as (9). We use bound-
ary layer analysis to approximate j�x, t� by the inner solu-
tion jin�x, t� � uin

x �x, t� in the intervals around the shocks
which give the only surviving contribution in the limit
as n ! 0. We skip these calculations (for details, see
[13,15]), noting simply that the boundary layer analysis
has to be carried one order further for the velocity gradient
than for velocity itself. Indeed jin � uin

x � n21y0z 1

y1 1 O�n�, and the contribution of y1z turns out to be
important. The calculation eventually leads to the follow-
ing expression for F � 2 limn!0n��jxx jj�Q�j :

F�j, t� � r
Z 0

2`
ds sV �s, j, t� , (21)

where V �s, j, t� � 1
2 
V1�s, j, t� 1 V2�s, j, t��,

V6�s, j6, t� are the conditional PDF’s of

s�y, t�, j6�y, t��, j6�y, t� are the velocity gradients
at the left and at the right of the shock. Thus, in the
infinite Reynolds number limit, the PDF of the regular
part of the velocity gradient satisfies

Qt � jQ 1 �j2Q�j 1 B1Qjj 1 F�j, t� . (22)

One important consequence of (22), together with the
equations of motion along the shocks,

ds
dt

� 2
s
2

�j1 1 j2� ,

dū
dt

� 2
s
4

�j1 2 j2� 1 f ,
(23)

is the statement that

lim
jjj!1`

j3Q�j, t� � 0 , (24)

i.e., Q goes to zero faster than jjj23 as j ! 2` and
j ! 1`, and a . 3 in (5). To see this, take the first
moment of (22):

d
dt

�j� � 
j3Q�1`
2` 1

r

2
��sj2� 1 �sj1�� , (25)

where we used
R

dj jF � r��sj2� 1 �sj1���2. Next,
average the first equations in (23):

d
dt

�r�s�� � 2
r

2
��sj2� 1 �sj1�� . (26)

This equation uses the fact that shocks are created at
zero amplitude, and shock strengths add up at collision.
These are consequences of the fact that the forcing is
smooth in space. Since d�j��dt � 2d�r�s���dt from
(19), the comparison between (25) and (26) tells us
that the boundary term in (25) must be zero. Since
Q $ 0, j3Q has different sign for large positive and
large negative values of j. Therefore we must have
limj!1`j3Q � 0 and limj!2`j3Q � 0. Hence, (24).
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The analysis can be carried out one step further for the
stationary case �Qt � 0�. Then, treating (22) as an in-
homogeneous second order ordinary differential equation,
we can write its general solution as Q � C1Q1 1 C2Q2 1

Q3, where C1 and C2 are constants, Q1 and Q2 are two lin-
early independent solutions of the homogeneous equation
associated with (22), and Q3 is some particular solution of
this equation. One such particular solution is

Q3 �
Z j

2`
dj0 j0F�j0�

B1
2

je2L

B1

Z j

2`
dj0 eL0

G�j0� ,

(27)
where L � j3��3B1� and

G�j� � F�j� 1 j
Z j

2`
dj0 j0F�j0�

B1
. (28)

With this particular solution, it can be shown (see [13,15]
for details) that the realizability constraints imply that
C1 � C2 � 0, i.e., the only non-negative, integrable so-
lution is Q � Q3. Furthermore, in order that Q actually
be non-negative, F must satisfy

lim
j!1`

j22eLF�j� � 0 . (29)

Substituting into (27), we get

Q �

(
C2jjj

23
Rj

2`dj0 j0F�j0� as j ! 2`

C1je2L as j ! 1` ,
(30)

which confirms the result Q � C2jjj
2a with a . 3 as

j ! 2`, and gives b � 1.
The actual value of the exponent a depends on the

asymptotic behavior of F. The latter can be obtained
from further considerations on the dynamics of the shock
(23). This is rather involved and will be left to [15]. The
result gives a � 7�2 which confirms the prediction of
[10]. Here, we will restrict ourselves to an interpretation
of the current approach in terms of the geometric picture
on the local analysis of shock creation [18]. Observe that
the largest values of j6 are achieved just after the shock
formation. For a shock created at �x, t� � �0, 0� with
velocity u � 0, we have locally x � ut 2 au3 1 · · · . It
follows that s � 22�t�a�1�2, j6 � 21�2t. Assuming
that these give the dominant contribution to F�j� for
large negative values of j, the asymptotic form of F
is F � C

R`

0 dt s
d�j 2 j2� 1 d�j 2 j1��, where C is
some constant related to the statistics of the shock lifetime
and a, s � 22�t�a�1�2, j6 � 21�2t. Direct evaluation
of this integral gives F � Cjjj25�2, and, hence,

Q � C2jjj
27�2 as j ! 2` . (31)

Even though this argument gives only a lower bound
for F at large negative values of j, further arguments
presented in [15] indicate that this lower bound is actually
sharp.

In summary, we derived master equations by evaluating
the infinite Reynolds number limit of the dissipative effect
of the singular structures, here the shocks. We also ex-
plored the consequences of the master equations without
resorting to closure assumptions. Asymptotic scaling of
the structure functions and bounds for the asymptotic be-
havior of the PDF of the velocity gradient were obtained
using self-consistent asymptotic analysis and realizability
constraints. Finally, the jjj27�2 prediction for the left tail
of the velocity gradient PDF was obtained by local analy-
sis around the singular structures. We certainly hope that
this philosophy will be useful for other problems.
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