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Stable Complexes of Parametrically Driven, Damped Nonlinear Schrodinger Solitons
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Since solitons of the parametrically driven damped nonlinear Schrédinger equation do not have
oscillatory tails, it was suggested that they cannot form bound states. We show that this equation does
support solitonic complexes, with the mechanism of their formation being different from the standard
tail-overlap mechanism. One of the arising stationary complexes is found to be stable in a wide range
of parameters, others unstable.
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Motivation.—Bound states of solitons and solitary nentially small repulsion. A related question is whether
pulses are attracting increasing attention in nonlinear opsoliton associations can arise only on finite intervals under
tics [1-5], dynamics of fluids [6—9], and excitable me- periodic boundary conditions and how essential the inter-
dia [10]. Sable bound states can compete with freeval finiteness and periodicity are for their stability. (Note
solitons as alternative attractors. This is detrimental irthat the experiments of [8,9] were carried out on relatively
nonlinear optics, for example, where the interaction beshort intervals [19]. On the other hand, periodic chains of
tween adjacent pulses poses limitations to the stableolitons can form stable stationary states even in situations
operation of transmission lines and information storagevhere a finite number of solitons do not bind [5].) Lastly,
elements. Unstable solitonic complexes are not meaning- numerical simulations can detect only stable complexes;
less either; they serve as intermediate states visited by thewever, the description of the phase space is incomplete

system when in the spatiotemporal chaotic regime. without knowledge of all unstable complexes and their
Here, we consider solitonic complexes in the parametbifurcations.
rically driven damped nonlinear Schrodinger equation, The purpose of this Letter is to answer some of these

_ ) . — questions and gain insight into others. We focus on
W+ Wy + 2V — W= =iy W+ V. (1) stationary complexes here. Oscillating complexes arise

This equation describes the effect of phase-sensitivélMPly as Hopf bifurcations of the latter.

amplifiers in optics [11]: the nonlinear Faraday resonance va'iational approximation.—Two coexisting station-
in oscillating water troughs [8,9,12,13], convection in &y solitons of Eq. (1) are given by

binary mixtures [14] and nematic liquid crystals [15], V. (x) = Are % secliAx),

magnetization waves in easy-plane ferromagnets with a rf N - -

magnetic field in the easy plane [16], and synchronized 090, = +4|1 — v? As = V1 T hco20
oscillations in parametrically driven Frenkel-Kontorova S h2’ - =
chains [17]. The soliton ¥'_ is always unstable [16] and hence is

Malom_ed noted that since solitons of Eq. (1) decayusually disregarded. We will attempt to approximate a
njonotonl.cally agx| — o, th_ey cannot form pound states complex of two solitonsW, by a trial function of the
via the tail-overlap mechanism [3]. A variational anaIyS|sform
indicated that in the undamped casg € 0), a strong
overlapping of solitons cannot lead to their binding W(x,7) = ¢(x — x0)e* ™™ + y(x + xo)e
either [7]. However, oscillatory and stationary soliton )
associations were observed in experiments with oscillating _
water troughs [8,9,18] and subsequently reproduced iWhere ¢ (x) = Ae'’ sectiAx) and parametersy, k, 6,
numerical simulations of Eq. (1) [9]. and A are allowed to depend on time. The evolution of

These experiments and simulations have raised severle parameters can be found if one notices that Eq. (1)
challenging questions. Firstly and most importantly, anfollows from the stationary action principléS = 0,
open problem is the very mechanism of the complex forWheres = [ L ¢*”' dr and the Lagrangian

—ik(x+xp)
9

mation. Next, it was observed that stationary (“stand- _

ing”) complexes exist only at large separations [8]; it has L = Re[(i‘l’t‘l’ — W+ |
therefore remained unclear whether these complexes are

genuinely stationary or do diverge slowly due to an expo- — V> = h¥?)dx. 3)
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Feeding (2) into (3), integrating x out and denoting z = 2Ax,, p = 2k/A yields a four-dimensional Lagrangian

L =4A(1 — 0,)0 + 29A + Apz — Azo,p — H, )
where the quantities o- and n are given by
(p.2) + iou(p.2) = — eiPz/2 ‘ (o) = |1~ Tp/2 _z o cothz
Telp,2) T TP, T T §nh(zmp/2)snh;’ TP E tanh(7p/2) tanhz |7 tanh(mp/2)"

The Hamiltonian H = H, + H;, comprises the free soliton contribution,

27 Ah cos(20)p

4
Ho(0,A,p) = 4A — — A3 + A3p? + =&
of P) 3 P sinh(7p/2)

and the Hamiltonian of the soliton-soliton interaction,

Hoi(0.A. p.2) = 47 A3 {|:2pCOS(pz/2)i| B [Sin(pz/Z):| L 4sin(pz/2) Sin(pz/Z)}
%A P Gnh(arp /2) snhz . snhz; . sinh’z AZsinhz
3 3 i
N 1.6A [ 2 } b 8mA . [Slr?(pz)} 4hAz S(_ + 29>
sinhz L sinhz J;  sinh(wp)sinhz L sinhz |, smhz
The variationsin z and @ yield, respectively, | leading order is given by a,H© = 0, which amounts to
—|— B
2yAp + 9.H =0, (5) e (1 + hcos26+)(z + sinhz) )
8yA(l — o) + 9gH = 0. (6) sinhz + 3z + 6[z(coshz — 3)/sinhz].

(Here and below we restrict ourselves to stationary _ _ _ _ _
solutions [20].) Since the second term in (5) decays  This relation defines A as a monotonically growing
rapidly as z grows, p hasto be small. We expand all other function of z. Next, the variation with respect to p
variables in powers of p: 9 = S 0Wpr, A =3 AWpn,  produces equation 2yAzoy = 9, H whose leading order
z=3zMp"n=0,1,.... Attheorder p° equation (6) IS

gives ) = ¢, while the next order produces

hcos20, 72 > P{A

- + 0 .
2 z + sinhz (P7)

hcos(264)z*
sinhz(z + sinhz)

@1 =
hsin20) =y — p +2H } 0, ©)

(7)  where we have used Eq. (7). One readily checks that the
Varying with respect to A we get 4yn = —d,H. Noting  expression in the curly brackets is linear in A2 and hence

that n = O(p) and writing H = > H"(6,A,z)p", the | Eq. (9) defines another function A(z),

Az[l N (% — 18)z + Z° N (72 + 3z?)coshz — 4(w? + 3z%) z(7r2 + z?)(4coshz — 1)}
6 sinhz 3sinh?z 3sinh’z

a? 23 } 2(m? + Z?) (10)

= hcos2 — + - ;
0+[ 6 = 2(z + sinhg) 6 sinhz

In Egs. (8) and (10) A and z stand for A©) and @, The | wherez = zandA = A. For example, for the above val-
curves (8) and (10) intersect at some point (7,A). For uesy = 0.565and 2 = 0.9 Eq. (12) yields p = —0.12.

example, for v = 0.565, h = 0.9 we have 7 = 4.60 and Thus, our approximate analysis predicts the existence
A = 1.14. of a stationary bound state of two solitons ¥, on the

Finally, the stationary value of p isfound from Eq. (5)  infinite line. Below this complex (denoted W, 1)) is re-
where it is sufficient to keep termsup to p!, obtained numerically and Fig. 1 compares it to the varia-

O] (0)

pyA + 0.5 + 0.5 =0, (11) tional approximation (2). It is seen that Z gives areason-

able approximation for the actual intersoliton separation
[Here we are regarding 9 Hmt as a function of z©, A©,  but as we proceed to the comparison of the shapes of
and 6© and discarding p!-corrections to this function ~ the numerical and variational solution, the agreement de-

which are negligible compared to the first term in (11)]  teriorates. The approximation could be improved by de-

From (11), the stationary value of p is coupling the solitons' amplitudes from their widths and
0) adding the chirp variable; however, even taken in its
1 9 Hing (12) present form the variational description allows us to draw

ﬁ:

2yA 1 — (z2/sinhz),”’ several principal conclusions. First, the phase variation is
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FIG. 1. The varigtional ansatz (2) with stationary values 6 =

0+, z=23%, A=A, and p = p (dotted) and the numericaly
obtained complex W4, (solid curves). All configurations
being symmetric, we show them only for x > 0.

an essential ingredient of the complex formation mecha-
nism. Had we not included a nonzero p, Eq. (5) would
have given us aZHi(f,)t) = 0 whose only root isz = 0. A
related observation concerns the interpretation suggested
in the undamped case [7] where the time-dependent ver-
sion of Eq. (9), z = p{---}, was used to eliminate p and
reduce the finite-dimensional dynamics to an equation for
a center-of-mass particle in a potential field Hfl?t)(z). In
this approach the stationary bound state of two solitons
would correspond to the particle sitting at the minimum

of Hl([?t) (z), with the momentum p = 0. (The problem

however is that no such nontrivial minima exist.) On the
contrary, our stationary bound state arises when the con-
tents of {- - -} in (9) vanish; this corresponds to the particle
with infinite mass and p # 0. Therefore the formation
of complexes in the parametrically driven damped non-
linear Schrodinger equation cannot be explained by the
two-particle mechanism [2—4,7,21] where one soliton is
captured in a potential well formed by its mate. Finaly,
the variable amplitude A is another essential ingredient.
As one can check, if no provision were made for the
variation of A, the resulting equations for z and p would
have stationary points only for large A > /1.726 + 2.
In this region all localized solutions are unstable against
radiation waves [16].

Numerical solutions.—We used a predictor-corrector
continuation agorithm with a fourth-order Newtonian
solver to obtain stationary solutions of Eq. (1). As a
bifurcation measure we adopted the energy functional

E = Re[{l\lfxlz + P> — |¥|* + ¥ dx, (13)

which is conserved when y = 0. Our findings are

summarized in Fig. 2 where we have also included

information on the stability of solutions. Thiswas studied

by computing, numerically, eigenvalues of the linearized
| problem

(0 -1 _ A2 — 6u? — 20? v — 4uv
3‘[)/—,&(1 O)y’ H = 8x+< vy — 4uv Az — 6v% — 2% ) (14)
where u + iv = W(x)e'?; (Su,dv)T = eMy(x), A = | bifurcation where a pair of unstable complex-conjugate

p — 7y. The phase variable y(x) = —arg¥ turns out to
be useful in the identification of different complexes. For
example, the phase of the solution identified as W, )
(i.e., asymmetric association of two ¥’sand one ¥_ in
between) is close to #_ around the central soliton and to
0+ around the two side ones (Fig. 3). The separation of
the ¥, and W_ constituents in this complex is large even
for small A (xo ~ 30 for h ~ 7). (All humbers are for
v = 0.565). As h — h. =./1 + y% and the width of
the central soliton increases (1/A- — ), the intersoliton
separation grows to infinity. If we continue to the right
along another branch, ¥ ), the separation decreases
fromxy ~ 30a h ~ y toxyg ~ 10 near the turning point
h = 0.86742. Turning left and upwards, the separation
keeps on decreasing, the central soliton gradually dies out
and the complex is made into W -_). After one more
turning point at &~ = 0.83504, as we continue to the right,
the amplitudes of the constituent solitons start to grow
and the complex gradually transforms into W, 4. Itis
interesting to note here that the asymptotic phase of the
solution remains equal to #_ and not 6 as could have
been expected of a complex of two ¥, solitons (Fig. 3).
At h = 0.9435 the complex undergoes an “inverse” Hopf
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eigenvalues crosses from Rex > 0 to Rex < 0 half plane.
The remaining portion of the W) branch (thick line
in Fig. 2) represents the only stable bound state in the
system; al other complexes were found to be unstable.
As h is increased, the intersoliton separation grows but
remains finite all theway upto h = h,.

Some insight into the structure of stationary complexes
can be gained by noting the law of the variation of the
“ared’ integral, N = [ |¥|?dx,

N = th p{sin2y) — sin(26=+)}dx. (15)

Here ¥ = /p e 'X. For stationary complexes the inte-
gral in the right-hand side has to vanish. This can be
easily achieved when solitons bind at a very large separa-
tion, asin W, —4). Inthis case the variation of y should
mainly be confined to regions where p is amost zero
(Fig. 3). The resulting contribution to the integral (15)
can be offset by small deviations of y from 6+ around
the centers of the solitons, and indeed, a closer inspection
reveals that sin(2y) — sin(26-) assumes small negative
values around the core of each soliton bound in W, ).
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FIG. 2. Existence and stability diagram of one-, two-, and
three-soliton stationary solutions. Thick and thin lines depict
stable and unstable branches, respectively. The boundary
conditions are ¥ (+L) = 0 where L was typically equal to 100.
Ash — h., L had to be increased up to 500. Eigenfunctions of
(14) were sought for as Fourier expansions over 1000 modes.

Formation mechanism.—As we have mentioned, the
binding mechanism is more involved here than just a bal-
ance of repulsion and attraction between the two solitons.
Details are yet to be elucidated in numerical simulations of
the time-dependent equation (1) while here we shall em-
phasize only its main ingredients. First of al, noting that
the amplitude of each soliton is given by Eqg. (8), one can
check that the area of the configuration (2) is a monotoni-
caly growing function of z. Consequently oscillations
of the separation between the two solitons are completely
characterized by oscillations of N. The dynamics of the
latter is described by Eg. (15) where the right-hand side
is very sensitive to variations of the phase (in particular,
to variations of our p variable). If the complex isin its
stage of expansion, at a certain moment of time the phase
x (x, 7) will pass through a configuration rendering the in-
tegral in (15) zero. The expansion will then switch to con-
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FIG. 3. The phase x(x) of the complex W._, (solid line).
The ¥, solitons in this complex are centered at xy, = =37
while the variation of y is confined mainly to 17 < |x| < 21.
Also shown is the phase of ¥, . (dashed) and ¥, . ) (dots).

traction—until the phaseisagain suchthat N = 0. Inthe
stable region of & and y the oscillations will settle to the
stationary complex W, ).
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