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Stable Complexes of Parametrically Driven, Damped Nonlinear Schrödinger Solitons
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Since solitons of the parametrically driven damped nonlinear Schrödinger equation do not have
oscillatory tails, it was suggested that they cannot form bound states. We show that this equation doe
support solitonic complexes, with the mechanism of their formation being different from the standard
tail-overlap mechanism. One of the arising stationary complexes is found to be stable in a wide range
of parameters, others unstable.
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Motivation.—Bound states of solitons and solitary
pulses are attracting increasing attention in nonlinear o
tics [1–5], dynamics of fluids [6–9], and excitable me
dia [10]. Stable bound states can compete with fre
solitons as alternative attractors. This is detrimental
nonlinear optics, for example, where the interaction b
tween adjacent pulses poses limitations to the sta
operation of transmission lines and information stora
elements.Unstable solitonic complexes are not meaning
less either; they serve as intermediate states visited by
system when in the spatiotemporal chaotic regime.

Here, we consider solitonic complexes in the param
rically driven damped nonlinear Schrödinger equation,

iCt 1 Cxx 1 2jCj2C 2 C � 2igC 1 hC . (1)

This equation describes the effect of phase-sensit
amplifiers in optics [11]: the nonlinear Faraday resonan
in oscillating water troughs [8,9,12,13], convection i
binary mixtures [14] and nematic liquid crystals [15]
magnetization waves in easy-plane ferromagnets with a
magnetic field in the easy plane [16], and synchroniz
oscillations in parametrically driven Frenkel-Kontorov
chains [17].

Malomed noted that since solitons of Eq. (1) deca
monotonically asjxj ! `, they cannot form bound states
via the tail-overlap mechanism [3]. A variational analys
indicated that in the undamped case (g � 0), a strong
overlapping of solitons cannot lead to their bindin
either [7]. However, oscillatory and stationary solito
associations were observed in experiments with oscillati
water troughs [8,9,18] and subsequently reproduced
numerical simulations of Eq. (1) [9].

These experiments and simulations have raised sev
challenging questions. Firstly and most importantly, a
open problem is the very mechanism of the complex fo
mation. Next, it was observed that stationary (“stan
ing”) complexes exist only at large separations [8]; it ha
therefore remained unclear whether these complexes
genuinely stationary or do diverge slowly due to an exp
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nentially small repulsion. A related question is whethe
soliton associations can arise only on finite intervals und
periodic boundary conditions and how essential the inte
val finiteness and periodicity are for their stability. (Not
that the experiments of [8,9] were carried out on relative
short intervals [19]. On the other hand, periodic chains
solitons can form stable stationary states even in situatio
where a finite number of solitons do not bind [5].) Lastly
numerical simulations can detect only stable complexe
however, the description of the phase space is incompl
without knowledge of all unstable complexes and the
bifurcations.

The purpose of this Letter is to answer some of the
questions and gain insight into others. We focus o
stationary complexes here. Oscillating complexes ari
simply as Hopf bifurcations of the latter.

Variational approximation.—Two coexisting station-
ary solitons of Eq. (1) are given by

C6�x� � A6e2iu6 sech�A6x�,

cos2u6 � 6

s
1 2

g2

h2 ; A6 �
p

1 1 h cos2u6 .

The soliton C2 is always unstable [16] and hence is
usually disregarded. We will attempt to approximate
complex of two solitonsC1 by a trial function of the
form

C�x, t� � c�x 2 x0�eik�x2x0� 1 c�x 1 x0�e2ik�x1x0�,

(2)

where c�x� � Ae2iu sech�Ax� and parametersx0, k, u,
and A are allowed to depend on time. The evolution o
the parameters can be found if one notices that Eq.
follows from the stationary action principledS � 0,
whereS �

R
L e2gt dt and the Lagrangian

L � Re
Z

�iCtC 2 jCxj
2 1 jCj4

2 jCj2 2 hC2� dx . (3)
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Feeding (2) into (3), integrating x out and denoting z � 2Ax0, p � 2k�A yields a four-dimensional Lagrangian

L � 4A�1 2 ss� �u 1 2h �A 1 Ap �z 2 Azss �p 2 H , (4)

where the quantities s and h are given by

sc�p, z� 1 iss�p, z� � 2p
eipz�2

sinh�pp�2� sinhz
; h�p, z� �

"
1 2

pp�2
tanh�pp�2�

2
z

tanhz

#
sc 1

pss cothz
tanh�pp�2�

.

The Hamiltonian H � H0 1 Hint comprises the free soliton contribution,

H0�u, A, p� � 4A 2
4
3

A3 1 A3p2 1
2pAh cos�2u�p

sinh�pp�2�
,

and the Hamiltonian of the soliton-soliton interaction,

Hint�u, A, p, z� �
4pA3

sinh�pp�2�

Ω∑
2p cos�pz�2�

sinhz

∏
z

2

∑
sin�pz�2�

sinhz

∏
zz

1
4 sin�pz�2�

sinh3z
1

sin�pz�2�
A2 sinhz

æ

1
16A3

sinhz

∑
z

sinhz

∏
z

1
8pA3

sinh�pp� sinhz

∑
sin�pz�
sinhz

∏
z

1
4hAz
sinhz

cos

µ
pz
2

1 2u

∂
.

The variations in z and u yield, respectively,

2gAp 1 ≠zH � 0 , (5)

8gA�1 2 ss� 1 ≠uH � 0 . (6)

(Here and below we restrict ourselves to stationary
solutions [20].) Since the second term in (5) decays
rapidly as z grows, p has to be small. We expand all other
variables in powers of p: u �

P
u�n�pn, A �

P
A�n�pn,

z �
P

z�n�pn; n � 0, 1, . . . . At the order p0 equation (6)
gives u�0� � u1, while the next order produces

h sin�2u� � g 2 p
h cos2u1

2
z2

z 1 sinhz
1 O�p2� .

(7)

Varying with respect to A we get 4gh � 2≠AH. Noting
that h � O�p� and writing H �

P
H�n��u, A, z�pn, the
leading order is given by ≠AH�0� � 0, which amounts to

A2 �
�1 1 h cos2u1� �z 1 sinhz�

sinhz 1 3z 1 6�z�coshz 2 3�� sinhz�z
. (8)

This relation defines A as a monotonically growing
function of z. Next, the variation with respect to p
produces equation 2gAzss � ≠pH whose leading order
is

p

Ω
A

h cos�2u1�z4

sinhz�z 1 sinhz�
1 2H�2�

æ
� 0 , (9)

where we have used Eq. (7). One readily checks that the
expression in the curly brackets is linear in A2 and hence
Eq. (9) defines another function A�z�,
A2

∑
1 1

�p2 2 18�z 1 z3

6 sinhz
1

�p2 1 3z2� coshz 2 4�p2 1 3z2�
3 sinh2z

1
z�p2 1 z2� �4 coshz 2 1�

3 sinh3z

∏

� h cos2u1

∑
p2

6
1

z3

2�z 1 sinhz�

∏
1

z�p2 1 z2�
6 sinhz

. (10)
In Eqs. (8) and (10) A and z stand for A�0� and z�0�. The
curves (8) and (10) intersect at some point �z̃, Ã�. For
example, for g � 0.565, h � 0.9 we have z̃ � 4.60 and
Ã � 1.14.

Finally, the stationary value of p is found from Eq. (5)
where it is sufficient to keep terms up to p1,

p�2gA 1 ≠zH
�1�
int � 1 ≠zH

�0�
int � 0 . (11)

[Here we are regarding ≠zH
�0�
int as a function of z�0�, A�0�,

and u�0� and discarding p1-corrections to this function
which are negligible compared to the first term in (11).]
From (11), the stationary value of p is

p̃ �
1

2gA
≠zH

�0�
int

1 2 �z2� sinhz�z
, (12)
where z � z̃ and A � Ã. For example, for the above val-
ues g � 0.565 and h � 0.9 Eq. (12) yields p̃ � 20.12.

Thus, our approximate analysis predicts the existence
of a stationary bound state of two solitons C1 on the
infinite line. Below this complex (denoted C�11�) is re-
obtained numerically and Fig. 1 compares it to the varia-
tional approximation (2). It is seen that z̃ gives a reason-
able approximation for the actual intersoliton separation
but as we proceed to the comparison of the shapes of
the numerical and variational solution, the agreement de-
teriorates. The approximation could be improved by de-
coupling the solitons’ amplitudes from their widths and
adding the chirp variable; however, even taken in its
present form the variational description allows us to draw
several principal conclusions. First, the phase variation is
2569
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FIG. 1. The variational ansatz (2) with stationary values u �
u1, z � z̃, A � Ã, and p � p̃ (dotted) and the numerically
obtained complex C�11� (solid curves). All configurations
being symmetric, we show them only for x . 0.

an essential ingredient of the complex formation mecha-
nism. Had we not included a nonzero p, Eq. (5) would
have given us ≠zH

�0�
int � 0 whose only root is z � 0. A

related observation concerns the interpretation suggested
in the undamped case [7] where the time-dependent ver-
sion of Eq. (9), �z � p�· · ·�, was used to eliminate p and
reduce the finite-dimensional dynamics to an equation for
a center-of-mass particle in a potential field H

�0�
int �z�. In

this approach the stationary bound state of two solitons
would correspond to the particle sitting at the minimum
2570
of H
�0�
int �z�, with the momentum p � 0. (The problem

however is that no such nontrivial minima exist.) On the
contrary, our stationary bound state arises when the con-
tents of �· · ·� in (9) vanish; this corresponds to the particle
with infinite mass and p fi 0. Therefore the formation
of complexes in the parametrically driven damped non-
linear Schrödinger equation cannot be explained by the
two-particle mechanism [2–4,7,21] where one soliton is
captured in a potential well formed by its mate. Finally,
the variable amplitude A is another essential ingredient.
As one can check, if no provision were made for the
variation of A, the resulting equations for z and p would
have stationary points only for large h .

p
1.726 1 g2.

In this region all localized solutions are unstable against
radiation waves [16].

Numerical solutions.—We used a predictor-corrector
continuation algorithm with a fourth-order Newtonian
solver to obtain stationary solutions of Eq. (1). As a
bifurcation measure we adopted the energy functional

E � Re
Z

�jCxj
2 1 jCj2 2 jCj4 1 hC2� dx , (13)

which is conserved when g � 0. Our findings are
summarized in Fig. 2 where we have also included
information on the stability of solutions. This was studied
by computing, numerically, eigenvalues of the linearized
problem
H y � m

µ
0 21
1 0

∂
y, H � 2≠2

x 1

µ
A2

1 2 6u2 2 2y2 g 2 4uy

g 2 4uy A2
2 2 6y2 2 2u2

∂
, (14)
where u 1 iy � C�x�eiu1 ; �du, dy�T � elty�x�, l �
m 2 g. The phase variable x�x� � 2argC turns out to
be useful in the identification of different complexes. For
example, the phase of the solution identified as C�121�
(i.e., a symmetric association of two C1’s and one C2 in
between) is close to u2 around the central soliton and to
u1 around the two side ones (Fig. 3). The separation of
the C1 and C2 constituents in this complex is large even
for small h (x0 	 30 for h 	 g). (All numbers are for
g � 0.565). As h ! hc �

p
1 1 g2 and the width of

the central soliton increases (1�A2 ! `), the intersoliton
separation grows to infinity. If we continue to the right
along another branch, C�212�, the separation decreases
from x0 	 30 at h 	 g to x0 	 10 near the turning point
h � 0.86742. Turning left and upwards, the separation
keeps on decreasing, the central soliton gradually dies out
and the complex is made into C�22�. After one more
turning point at h � 0.83504, as we continue to the right,
the amplitudes of the constituent solitons start to grow
and the complex gradually transforms into C�11�. It is
interesting to note here that the asymptotic phase of the
solution remains equal to u2 and not u1 as could have
been expected of a complex of two C1 solitons (Fig. 3).
At h � 0.9435 the complex undergoes an “ inverse” Hopf
bifurcation where a pair of unstable complex-conjugate
eigenvalues crosses from Rel . 0 to Rel , 0 half plane.
The remaining portion of the C�11� branch (thick line
in Fig. 2) represents the only stable bound state in the
system; all other complexes were found to be unstable.
As h is increased, the intersoliton separation grows but
remains finite all the way up to h � hc.

Some insight into the structure of stationary complexes
can be gained by noting the law of the variation of the
“area” integral, N �

R
jCj2 dx,

�N � 2h
Z

r�sin�2x� 2 sin�2u6�� dx . (15)

Here C �
p

r e2ix . For stationary complexes the inte-
gral in the right-hand side has to vanish. This can be
easily achieved when solitons bind at a very large separa-
tion, as in C�121�. In this case the variation of x should
mainly be confined to regions where r is almost zero
(Fig. 3). The resulting contribution to the integral (15)
can be offset by small deviations of x from u6 around
the centers of the solitons, and indeed, a closer inspection
reveals that sin�2x� 2 sin�2u6� assumes small negative
values around the core of each soliton bound in C�121�.
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FIG. 2. Existence and stability diagram of one-, two-, and
three-soliton stationary solutions. Thick and thin lines depict
stable and unstable branches, respectively. The boundary
conditions are C�6L� � 0 where L was typically equal to 100.
As h ! hc, L had to be increased up to 500. Eigenfunctions of
(14) were sought for as Fourier expansions over 1000 modes.

Formation mechanism.—As we have mentioned, the
binding mechanism is more involved here than just a bal-
ance of repulsion and attraction between the two solitons.
Details are yet to be elucidated in numerical simulations of
the time-dependent equation (1) while here we shall em-
phasize only its main ingredients. First of all, noting that
the amplitude of each soliton is given by Eq. (8), one can
check that the area of the configuration (2) is a monotoni-
cally growing function of z. Consequently oscillations
of the separation between the two solitons are completely
characterized by oscillations of N . The dynamics of the
latter is described by Eq. (15) where the right-hand side
is very sensitive to variations of the phase (in particular,
to variations of our p variable). If the complex is in its
stage of expansion, at a certain moment of time the phase
x�x, t� will pass through a configuration rendering the in-
tegral in (15) zero. The expansion will then switch to con-

FIG. 3. The phase x�x� of the complex C�121� (solid line).
The C1 solitons in this complex are centered at x0 
 637
while the variation of x is confined mainly to 17 , jxj , 21.
Also shown is the phase of C�11� (dashed) and C�111� (dots).
traction—until the phase is again such that �N � 0. In the
stable region of h and g the oscillations will settle to the
stationary complex C�11�.
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