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We point out that using the state-of-the-art (or soon-to-be) intense electromagnetic pulses, violent
accelerations that may be suitable for testing quantum field theory in curved spacetime can be realized
through the interaction of a high-intensity laser with an electron. In particular, we demonstrate that the
Unruh radiation is detectable, in principle, beyond the conventional radiation (most notably the Larmor
radiation) background noise, by taking advantage of its specific dependence on the laser power and
distinct character in spectral-angular distributions.

PACS numbers: 04.80.Cc, 52.40.Nk
General relativity (GR) is by birth a classical theory.
The celebrated discovery by Hawking [1] of the black hole
radiation links the GR to quantum mechanics and thermo-
dynamics in one stroke. While the ultimate theoretical un-
derstanding of the Hawking radiation, for example through
the superstring theory [2], is still in progress, the funda-
mental importance of the Hawking radiation is hardly ques-
tionable. Subsequent to Hawking’s discovery, Unruh [3]
established that similar radiation can also occur for a “par-
ticle detector” under acceleration. Without resorting to de-
tailed arguments, one can readily appreciate such a notion
intuitively based on the equivalence principle. While the
celestial observations of GR effects are clearly important,
one wonders if by means of extremely violent accelera-
tion in the laboratory setting these effects can be detected
or tested by controlled experiments.

There have been proposals for laboratory detection
of the Unruh effect [4]. For example, Yablonovich [5]
proposed to detect the Unruh radiation using ionization
fronts in solids. Darbinyan et al. [6] proposed to test
it through the crystal channeling phenomena. Since the
sought-after effects are typically extremely weak, the most
severe problem would be the struggle against paramount
background signals. Thus the challenge in general is to
find a physical setting which can maximally enhance the
signal above its competing backgrounds.

It is known that plasma wakefields excited by either
a laser pulse [7] or an intense electron beam [8] can
in principle provide an acceleration gradient as high as
100 GeV�cm, or 1023g©. Such acceleration relies on
the collective perturbations of the plasma density excited
by the driving pulse and restored by the immobile ions,
and therefore is an effect arisen over a plasma period.
There is in fact another aspect of laser-driven electron
acceleration. Namely, when a laser is ultrarelativistic
(i.e., a0 � eE0�mcv0 ¿ 1), an electron under the direct
influence of the laser can be instantly accelerated (and
decelerated) in every laser cycle (which is typically
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a much higher frequency than that of the plasma),
resulting in an intermittent acceleration that is much
more violent than that provided by the plasma wakefields.
For the Petawatt-class lasers currently under development
[9], 10 TeV�cm, or 1025g©, will be possible for such
intermittent acceleration in the near future.

The outstanding character of our system is that the
intermittent laser acceleration is macroscopic and can be
described by classical electrodynamics with well-defined
trajectory and acceleration, and therefore the semiclassical
theory, i.e., the quantum field theory in curved spacetime,
where the Unruh effect is based upon, can be readily
applied.

According to Unruh [3] and Davies [10], a uniformly
accelerated particle finds itself embedded in a thermal heat
bath with temperature

kT �
h̄a

2pc
, (1)

where a is the constant proper acceleration of the particle.
In the standard treatment, an internal degree of freedom
of the accelerated particle is invoked as a means to
detect the Unruh effect. This can be, for example, a
monopole moment (interacting with a scalar field) [11,12],
or the spin of an electron (interacting with EM fields)
[13]. Since the agency that we rely on for the violent
acceleration is electromagnetic and acts only on charged
particles, we consider an electron, the lightest charged
particle, as our particle detector. As was shown by
Bell and Leinaas [13], the manifestation of the Unruh
effect through the equilibrium degree of spin polarization
would require an unphysically long time in the case of
a linear acceleration, yet for such an effect in a circular
motion the spin-orbit coupling complicates the issue. In
our approach, we do not invoke any internal degree of
freedom. Rather, we rely on the quivering motion of
the electron under the influence of the nontrivial vacuum
fluctuations, and look for the emitted photons so induced
as our signals.
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To be sure, the Unruh radiation is not a “new”
radiation. Using the standard field theory (in this case
quantum electrodynamics), one should in principle be able
to arrive at the same result when properly taking particle
radiation reaction into account. Treating the problem in
the instantaneous proper frame and invoking the particle
response to the thermal vacuum fluctuations, however,
help to elucidate the phenomenon through a very intuitive
picture in the spirit of the fluctuation-dissipation theorem
[14] in thermodynamics.

We assume that in the leading order the accelerated
electron is “classical,” with well-defined acceleration,
velocity, and position. Therefore we can introduce a
Lorentz transformation so that the electron is described
in its instantaneous proper frame. Also at this level
the linearly accelerated electron will execute a classical
Larmor radiation. As a response to the Larmor radiation,
the electron reacts to the vacuum fluctuations with a
quivering motion in its proper frame. This in turn triggers
additional radiation. We assume that this quivering
motion is nonrelativistic in the proper frame, and the
interaction Hamiltonian can be written as

HI � 2
e

mc
�p ? �A � 2e �x ? �E . (2)

The probability of the emission of a photon with energy
v � E 0 2 E is

N�v� �
1
h̄2

Z
ds

Z
dt j�1 �k ,E0jHI jE , 0�j2

�
e2

h̄2

3X
i,j

Z
ds

Z
dt e2ivt�xi�s�xj�s��

3 �Ei�s 2 t�2�Ej�s 1 t�2�� , (3)

where s and t are the absolute and relative proper
time, respectively. The t dependence of the position
operator has been extracted to the phase due to a unitary
transformation. The last bracket is the autocorrelation
function for the fluctuations of the electric field in the
vacuum.

For the sake of simplicity, we treat the laser as a
plane EM wave. Furthermore, as we would like to work
with a quasilinear acceleration, we consider two identical,
counterpropagating plane waves that provide a standing
wave. Let the lasers be linearly polarized in x direction
and propagation in the 6z direction, with amplitude E �
E0 cos�v0t 6 k0z�, where v0 and k0 are the laser an-
gular frequency and wave number, respectively. The
Lorentz force equations for the accelerated electron can be
written as

dpx

dt
� 2e�Ex 2 bzBy� ,

dpz

dt
� 2ebxBy ,

(4)
where

Ex � E0�cos�v0t 2 k0z� 1 cos�v0t 1 k0z�� ,

By � E0�cos�v0t 2 k0z� 2 cos�v0t 1 k0z�� ,
(5)

Note that at locations where k0z � 0, 62p , . . . , By � 0
identically for all times and Ex takes the maximum value.
We will invoke one of these nodal points for the detection
of the Unruh signals. Specifically, at z � 0 we find

gbx � 2a0 sinv0t, g �
p

1 1 4a2
0 sin2v0t , (6)

where a0 � eE0�mcv0 is the dimensionless laser
strength parameter. The proper acceleration, which is
related to that in the laboratory frame by a � g3alab ,
is thus

a � 2ca0v0 cosv0t . (7)

To derive the autocorrelation function, we look for the
transformation between laboratory and proper spacetimes.
As dt � dt�g, in the limit a0 ¿ 1 we find

sinv0t � tanh�2a0v0t��
p

1 1 4a2
0 sech2�2a0v0t� ,

sink0x � 2a0 cosv0t�
p

1 1 4a2
0 .

(8)

As we are dealing with a periodic motion, it is sufficient
that we focus on the time interval 2p�2 # v0t # p�2.
This corresponds to p�a0 # v0t # p�a0. Within the
limit where 4a2

0 sech2�2a0v0t� ¿ 1, the above equation
reduces to

sinv0t 	
1

2a0
sinh�2a0v0t� ,

cosk0x 	
1

2a0
cosh�2a0v0t� .

(9)

These can be readily recognized as conformal trans-
formations of the Rindler transformation for constant
acceleration [15], where t � �c�a� sinh�at�c� and x �
�c2�a� cosh�at�c�. In fact, within our approximation
it is consistent to further put sinv0t 	 v0t, and k0x 	
p�2 2 �1�2a0� cosh�2a0v0t�. As the autocorrelation
function depends on t and x through t�s 2 t�2� 2

t�s 1 t�2� and x�s 2 t�2� 2 x�s 1 t�2�, the ad-
ditive constant phase in x does not contribute to the
vacuum fluctuations. We have thus demonstrated that
in the a0 ¿ 1 regime the laser driven acceleration is
quasiconstant, and we recover the well-known expression
for autocorrelation function [16] (with the constant proper
acceleration replaced by 2ca0v0):

�Ei�s 2 t�2�Ej�s 1 t�2�� � dij
4h̄

pc3 �2a0v�4

3 csch4�a0v0t� . (10)

We emphasize that while this derivation is an approxi-
mation, it is valid for a good fraction of the laser half-
cycle. For example, with a0 � 100, it covers a time
interval up to v0t 
 60.4. The range further expands
for even larger a0. More importantly, it can also be
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shown that beyond this time range the autocorrelation
function diminishes rapidly due to the asymptotic satu-
ration of the hyperbolic tangent function at large argu-
ments [cf. Eq. (8)], i.e., the t and x differences between
the proper times s 2 t�2 and s 1 t�2 are exponen-
tially suppressed when 2a0v0s ¿ 1. We can therefore
safely extend the limits of t integration in Eq. (3) to 6`.

With a change of variable s � a0v0t in Eq. (3),
we find

dN�v�
ds

�
1

2p

e2

h̄c3 �2a0v0�3�x2�
Z 1`

2`
dse2isv�a0v0

3 csch4�s 2 ie� , (11)

where �x2� �
P3

i �x2
i �. This integral has poles at s �

npi, and is periodic every Ds � pi. Thus it can be
easily performed by returning the contour along the line
Im s � p , and we get

dN�v�
ds

�
e2

3h̄c3 �2a0v0�2�x2�

"
2v 1

√
1

2a0v0

!2

v3

#

3 �epv�a0v0 2 1�21. (12)

The expectation value of x2 fluctuates due to the ran-
dom absorption of quanta from the vacuum fluctuations.
From the uncertainty principle we have �x2

i � �p2
i � * h̄2.

By absorbing a quanta of frequency v, the corresponding
change of momentum is �p2

i � � �p2��3 � �2�3�mh̄v.
We shall thus assume that

�x2� �
3X
i

�x2
i � 


9
2

h̄
mv

. (13)

Note that this expression is invalid when the quiver-
ing motion becomes relativistic, i.e., �p2� * �mc�2. Be-
yond this limit a fully relativistic treatment is necessary.
Taking the typical frequency of the vacuum fluctuation
spectrum, v 
 kT�h̄, the nonrelativistic approximation
corresponds to the constraint that kT & mc2. Accord-
ingly, this means the fluctuations of the electron positron
in our case should be larger than the Compton wave-
length, i.e., �x2� * l-c

2, which is consistent with our semi-
classical treatment.

To find the radiation power, we insert Eq. (13) into
Eq. (12) and formally integrate over h̄dv with an infrared
cutoff set by the laser frequency v0. (Note that for
nonperiodic accelerations, the Unruh radiation power
would be exponentially suppressed if the acceleration
proper time is much shorter than a critical value, tc �
2pca. But this is not the case here.) We obtain

dIU

ds
�

Z `

v0

h̄dv
dN
ds

	
12
p

reh̄
c

�a0v0�3 log�a0�p� .

(14)

The above result applies to an accelerated electron lo-
cated exactly at z � 0. At the vicinity of this point,
e.g., k0z � e ø 1, there is a nonvanishing magnetic field
jByj � ejExj, which induces a bz 
 O �e� in addition
to the dominant bx . But the proper acceleration is af-
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fected only to the order e2: a 	 2cv0a0�1 2 O �e2��.
For electrons farther away where the decrease of accel-
eration becomes more significant, both the Unruh and the
background Larmor radiations will decrease much more
rapidly due to their strong dependences on acceleration.
The experiment should therefore focus tightly on the sig-
nals from the origin and its immediate surroundings.

At the classical level, the same linear acceleration in-
duces a Larmor radiation. In our theory, the Unruh radia-
tion is induced by the reaction to the Larmor radiation
and is a minute perturbation of it. In addition the pho-
ton �k space that we are interested in detecting is along
the direction of acceleration where the Larmor radiation is
the weakest. Therefore the two radiations can be treated
as independent processes without interference. The total
Larmor radiation power is

dIL

dt
�

2
3

e2

m2c3

√
dpm

dt

dpm

dt

!

�
8
3

remca2
0v2

0 cos2�v0t� , (15)

and the total energy radiated during each laser half-
cycle is DIL � �4p�3�remca2

0v0. On the other hand,
the Unruh radiation is significant over a reduce proper
time period v0Ds * O �1�a0�. Nevertheless, within this
time the electron has become relativistic, with g 

a0. As a result, the total energy radiated in the lab
frame, i.e., DIU 
 �dIU�ds�gDs, is DIU 
 �12�p� 3

�reh̄�c�a3
0v

2
0 log�a0�p�. Thus the relative yield is

DIU

DIL



9
p2

h̄v0

mc2 a0 log�a0�p� . (16)

Since a0 ~ 1�v0, the relative yield is not sensitive to the
laser frequency.

Consider a Petawatt-class laser currently under devel-
opment [9], where, let us assume, v0 
 2 3 1015 sec21

and a0 
 100. This gives �DIU�DIL� 
 3 3 1024. Al-
ternatively, if one invokes a free-electron-laser-driven
coherent x-ray source [17], it is conceivable to have
h̄v0 
 10 keV and a0 
 10. This would raise the signal-
to-noise ratio to order unity. Even though this ratio is at
best of order unity, the time structure of these radiations
and their different characters in spectral-angular distribu-
tions and polarizations help to much relax the demand on
acceleration for detectability.

In our treatment the thermal fluctuation is isotropic
[cf. Eq. (10)] [18] in the electron’s proper frame. The ra-
diation induced is therefore also isotropic in the electron’s
proper frame. But since at each half cycle the electron
rapidly becomes relativistic, with g 
 a0, the Unruh ra-
diation is boosted along the direction of polarization (x
axis) in the lab frame. Furthermore, as we have discussed
above, the autocorrelation function, and therefore the
Unruh signals, tend to diminish more rapidly than that
from Larmor within the laser half cycle. This should in-
duce a sharper time structure for the former.
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Transforming the Unruh radiation power back to the lab
frame with g 
 a0, the angular distribution in the small-
angle expansion becomes

dIU

dtdV
�

4
p2

reh̄
c

v
3
0a3

0

�1 1 a2
0u2�3

. (17)

The Larmor radiation is polarized and its angular
distribution in the small �u, f� polar-angle expansion is
[19]

d2IL

dtdV
�

8remca2
0v

2
0

�1 1 a2
0u2�3

"
1 2

4a2
0u2�1 2 f2�

�1 1 a2
0u2�2

#
. (18)

It is clear that the Larmor radiation power is minimum at
�u, f� � �1�a0p , 0�, where d2IL�dtdV � 0. Consider
a detector which covers an azimuthal angle Df � 1023

around this “blind spot,” and an opening polar angle,
Du ø 1�a0. Then the partial radiation power for the
Unruh signal would dominate over that for the Larmor
within this solid angle.

In our discussion, we did not specify the source for the
electrons. One possibility is to create low energy photo-
electrons near the surface of a solid material. There
should also be other means, for example through laser
trapping and cooling, in producing ultralow energy elec-
trons. In these approaches the laser-electron interaction
occurs in vacuum and there should be minimal additional
backgrounds induced. If it is found more desirable to in-
voke a low temperature plasma, then the accelerated elec-
trons will interact with the plasma ions and trigger the
conventional bremsstrahlung. Even in this case we find
that as long as the plasma density is low enough, the
Unruh signal wins over that from bremsstrahlung. The
cross section of bremsstrahlung for an unscreened hy-
drogen nucleus per unit photon energy is well known:
dx�dh̄v 
 �16�3�ar2

e ln�EE0�mc2v�. However, it is
important to note that the bremsstrahlung yield depends
quadratically, whereas the Unruh signals linearly on the
plasma density. The break-even point between the signal
and the noise is np & 1018 cm23. Therefore as long as
one chooses a plasma density below this value, the back-
grounds from bremsstrahlung can be minimized.

We have investigated the Unruh effect associated with a
sinusoidally time-varying linear accelerating field, such as
that provided by a laser standing wave. We demonstrate
that the Unruh radiation can in principle be detectable
against the backgrounds from the conventional radiations
using the frontier laser technology and the various experi-
mental techniques. The violent, macroscopic acceleration
available from ultrarelativistic lasers can also be a useful
tool to test other salient features of general relativity in
the laboratory setting.
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